ERLANG

Kernel

Copyright © 1997-2022 Ericsson AB. All Rights Reserved.
Kernel 6.5.2.5
May 3, 2022

Copyright © 1997-2022 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

May 3, 2022

1.1 Introduction

1 Kernel User's Guide

1.1 Introduction
1.1.1 Scope

TheKernd application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and soon.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications

* Codeloading

e Logging

e Globa name service

* Supervision of Erlang/OTP

* Communication with sockets

e Operating system interface

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language.

1.2 Logging

Erlang/OTP 21.0 providesastandard API for logging through Logger , whichispart of the Kernel application. Logger
consists of the API for issuing log events, and a customizable backend where log handlers, filters and formatters can

be plugged in.
By default, the Kernel applicationinstallsonelog handler at system start. Thishandler isnamed def aul t . It receives

and processes standard |og events produced by the Erlang runtime system, standard behaviours and different Erlang/
OTP applications. The log events are by default written to the terminal.

You can also configure the system so that the default handler prints log events to a single file, or to a set of wrap
logsviadi sk_I og.

By configuration, you can also modify or disable the default handler, replace it by a custom handler, and install
additional handlers.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger APl and
functionality in patches following this release. These changes might or might not be backwards compatible with
theinitial version.

1.2.1 Overview
A log event consists of alog level, the message to be logged, and metadata.

Ericsson AB. All Rights Reserved.: Kernel | 1

1.2 Logging

The Logger backend forwards log events from the AP, first through a set of primary filters, then through a set of
secondary filters attached to each log handler. The secondary filters are in the following named handler filters.

Each filter set consists of alog level check, followed by zero or morefilter functions.

The following figure shows a conceptual overview of Logger. The figure shows two log handlers, but any number

of handlers can be installed.
[API]

Module Level

ar —
Global Level ~~. -

. r H ‘
i) e Config
Global Filters P N
e r. f l
, s .
Handler rd Handler L/
Level Level
Handler Handler
Filters Filters
- g . o ———p Log event flow

- — p Update configuration

Handler Handler . .
Callback Callback = =« — P Look up configuration

Figure 2.1: Conceptual Overview

Log levelsare expressed as atoms. Internally in Logger, the atoms are mapped to integer values, and alog event passes
the log level check if the integer value of itslog level isless than or equal to the currently configured log level. That
is, the check passesif the event is equally or more severe than the configured level. See section Log Level for alisting
and description of al log levels.

The primary log level can be overridden by alog level configured per module. This is to, for instance, allow more
verbose logging from a specific part of the system.

2 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

Filter functions can be used for more sophisticated filtering than the log level check provides. A filter function can
stop or pass alog event, based on any of the event's contents. It can also modify all parts of the log event. See section
Filters for more details.

If alog event passes through al primary filtersand al handler filtersfor a specific handler, Logger forwards the event
to the handler callback. The handler formats and prints the event to its destination. See section Handlers for more
details.

Everything up to and including the call to the handler callbacks is executed on the client process, that is, the process
where the log event was issued. It is up to the handler implementation if other processes are involved or not.

The handlers are called in sequence, and the order is not defined.

1.2.2 Logger API

The API for logging consists of a set of macros, and a set of functionson theform | ogger : Level / 1, 2, 3, which
aredl shortcutsfor | ogger: | og(Level , Argl[, Arg2[, Arg3]]).

The macros are defined inl ogger . hr | , which isincluded in amodule with the directive
-include lib("kernel/include/logger.hrl").

The difference between using the macros and the exported functions is that macros add location (originator)
information to the metadata, and performslazy evaluation by wrapping the logger call in acase statement, soitisonly
evaluated if thelog level of the event passes the primary log level check.

Log Level

Thelog level indicates the severity of aevent. In accordance with the Syslog protocol, RFC 5424, eight log levels can
be specified. The following table lists al possible log levels by name (atom), integer value, and description:

Level I nteger Description
emergency 0 system is unusable
aert 1 action must be taken immediately
critical 2 critical conditions
error 3 error conditions
warning 4 warning conditions
notice 5 normal but significant conditions
info 6 informational messages
debug 7 debug-level messages
Table 2.1: Log Levels

Notice that the integer value is only used internally in Logger. In the API, you must always use the atom. To compare
the severity of two log levels, use | ogger : conpar e_| evel s/ 2.

Ericsson AB. All Rights Reserved.: Kernel | 3

href

1.2 Logging

Log Message

The log message contains the information to be logged. The message can consist of a format string and arguments
(given as two separate parameters in the Logger API), astring or areport. The latter, which is either amap or akey-
value list, can be accompanied by a report callback specified in the log event's metadata. The report callback is a
convenience function that the formatter can use to convert the report to a format string and arguments, or directly
to a string. The formatter can also use its own conversion function, if no callback is provided, or if a customized
formatting is desired.

The report callback must be a fun with one or two arguments. If it takes one argument, this is the report itself, and
the fun returns aformat string and arguments:

fun((l ogger:report()) -> {io:format(),[term()]1})

If it takes two arguments, the first is the report, and the second is a map containing extra data that allows direct
coversion to a string:

fun((l ogger:report(),l ogger:report_cb_config()) -> unicode: chardata())

The fun must obey the dept h and chars_| i m t parameters provided in the second argument, as the formatter
cannot do anything useful of these parameters with the returned string. The extra data also contains a field named
si ngl e_I i ne, indicating if the printed |og message may contain line breaks or not. This variant is used when the
formatting of the report depends on the size or single line parameters.

Example, format string and arguments:

logger:error("The file does not exist: ~ts",[Filenamel])
Example, string:

logger:notice("Something strange happened!")
Example, report, and metadata with report callback:

logger:debug(#{got => connection request, id => Id, state => State},
#{report_cb => fun(R) -> {"~p",[R]} end})

The log message can also be provided through afun for lazy evaluation. The funis only evaluated if the primary log
level check passes, and is therefore recommended if it is expensive to generate the message. The lazy fun must return
astring, areport, or atuple with format string and arguments.

Metadata

M etadata contains additional data associated with alog message. L ogger inserts some metadata fields by default, and
the client can add custom metadata in two different ways:

Set process metadata

Process metadata is set and updated with | ogger:set _process _netadata/1l and
| ogger: updat e_process_net adat a/ 1, respectively. This metadata applies to the process on which
these calls are made, and Logger adds the metadata to all log events issued on that process.

Add metadata to a specific log event

Metadata associated with one specific log event is given as the last parameter to the log macro or Logger API
function when the event isissued. For example:

?LOG_ERROR("Connection closed",#{context => server})

4 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

See the description of the | ogger : net adat a() type for information about which default keys Logger inserts,
and how the different metadata maps are merged.

1.2.3 Filters

Filters can be primary, or attached to a specific handler. Logger calls the primary filtersfirst, and if they all pass, it
calls the handler filters for each handler. Logger calls the handler callback only if all filters attached to the handler
in question also pass.

A filter isdefined as:
{FilterFun, Extra}

whereFi | t er Fun isafunction of arity 2, and Ext r a isany term. When applying thefilter, Logger callsthefunction
with the log event as the first argument, and the value of Ext r a asthe second argument. See | ogger: filter ()
for type definitions.

Thefilter function can return st op, i gnor e or the (possibly modified) log event.

If st op isreturned, the log event isimmediately discarded. If the filter is primary, no handler filters or callbacks are
caled. If itisahandler filter, the corresponding handler callback is not called, but the log event is forwarded to filters
attached to the next handler, if any.

If the log event is returned, the next filter function is called with the returned value as the first argument. That is, if
afilter function modifies the log event, the next filter function receives the modified event. The value returned from
the last filter function is the value that the handler callback receives.

If the filter function returnsi gnor e, it means that it did not recognize the log event, and thus leaves to other filters
to decide the event's destiny.

The configuration optionfi | t er _def aul t specifies the behaviour if al filter functions returni gnor e, or if no
filtersexist.fi | t er _def aul t isby default settol og, meaningthat if al existing filtersignore alog event, Logger
forwards the event to the handler callback. If fi | t er _def aul t issettost op, Logger discards such events.

Primary filters are added with | ogger:add_primary _filter/2 and removed with
| ogger:remove_primary filter/ 1. They can aso be added at system start via the Kernel configuration
parameter | ogger .

Handler filters are added with | ogger:add_handler filter/3 and removed with
| ogger:renmove_handl er _filter/2.They canalso be specified directly in the configuration when adding a
handler with | ogger : add_handl er/ 3 or viathe Kernel configuration parameter | ogger .

To see which filters are currently installed in the system, use | ogger: get _config/0, or
| ogger:get _primary_config/0and | ogger: get handl er _confi g/ 1. Filters are listed in the order
they are applied, that is, thefirst filter in the list is applied first, and so on.

For convenience, the following built-in filters exist:
| ogger filters: domain/2
Provides away of filtering log events based on adormai n field in Met adat a.
| ogger _filters:level/2
Provides away of filtering log events based on the log level.
| ogger filters: progress/2
Stops or alows progress reportsfrom super vi sor and appl i cati on_control |l er.
| ogger filters:renote _gl/2
Stops or alows log events originating from a process that has its group leader on a remote node.

Ericsson AB. All Rights Reserved.: Kernel | 5

1.2 Logging

1.2.4 Handlers
A handler is defined as a module exporting at least the following callback function:

| og(LogEvent, Config) -> void()

This function is called when alog event has passed through all primary filters, and all handler filters attached to the
handler in question. The function call is executed on the client process, and it is up to the handler implementation if
other processes are involved or not.

Logger allows adding multiple instances of a handler callback. That is, if a callback module implementation allows
it, you can add multiple handler instances using the same callback module. The different instances are identified by
unique handler identities.

In addition to the mandatory callback function | og/ 2, a handler module can export the optional callback
functionsaddi ng_handl er/ 1,changi ng_confi g/ 3,filter_config/ 1l,andrenovi ng_handl er/ 1.
See section Handler Callback Functionsin the logger(3) manual page for more information about these function.

The following built-in handlers exist:
| ogger_std_h

Thisisthe default handler used by OTP. Multipleinstances can be started, and each instance will write log events
to agiven destination, terminal or file.

| ogger di sk log_h
This handler behaves much likel ogger st d_h, except it usesdi sk_| og asits destination.
error_| ogger

This handler is provided for backwards compatibility only. It is not started by default, but
will be automaticaly started the first time an error | ogger event handler is added with
error _| ogger:add_report_handler/1, 2.

Theold error _I ogger event handlersin STDLIB and SASL till exist, but they are not added by Erlang/
OTP 21.0 or later.

1.2.5 Formatters

A formatter can be used by the handler implementation to do the final formatting of alog event, before printing to
the handler's destination. The handler callback receives the formatter information as part of the handler configuration,
which is passed as the second argument to HVbdul e: | og/ 2.

Theformatter information consist of aformatter module, FModul e and its configuration, FConf i g. FModul e must
export the following function, which can be called by the handler:

f or mat (LogEvent, FConfi g)
-> FormattedLogEntry

The formatter information for a handler is set as a part of its configuration when the handler is added. It
can aso be changed during runtime with | ogger: set _handl er _confi g(Handl erld, formatter,
{ FModul e, FConfi g}) ., which overwrites the current formatter information, or with
| ogger: update_formatter_confi g/ 2, 3, which only modifies the formatter configuration.

If the formatter module exports the optional callback function check confi g(FConfi g), Logger calls this
function when the formatter information is set or modified, to verify the validity of the formatter configuration.

If no formatter information is specified for a handler, Logger uses | ogger fornatter as default. See the
| ogger fornatter(3) manua page for more information about this module.

6 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

1.2.6 Configuration

At system start, Logger is configured through Kernel configuration parameters. The parameters that apply to Logger
are described in section Kernel Configuration Parameters. Examples are found in section Configuration Examples.

During runtime, Logger configuration is changed via API functions. See section Configuration API Functions in the
| ogger (3) manual page.

Primary Logger Configuration

Logger API functions that apply to the primary Logger configuration are:

e get _primary_config/0

e set_primary_config/1l,2

e update primary_config/1l

e add_primary filter/2

e renove_primary_filter/1

The primary Logger configuration is amap with the following keys:
level = logger:level() | all | none

Specifiesthe primary log level, that is, log event that are equally or more severe than thislevel, are forwarded to
the primary filters. Less severe log events are immediately discarded.

See section Log Level for alisting and description of possible log levels.

The initial value of this option is set by the Kernel configuration parameter | ogger | evel . It is changed
during runtimewith | ogger: set _primary_config(l evel, Level).

Defaultstonot i ce.

filters = [{Filterld,Filter}]
Specifiesthe primary filters.
e Filterld = logger:filter_id()
e Filter = logger:filter()

The initial value of this option is set by the Kernel configuration parameter | ogger. During
runtime, primary filters are added and removed with | ogger:add primary filter/2 and
| ogger:renove_primary_filter/1,respectively.

See section Filters for more detailed information.
Defaultsto[] .
filter_default = log | stop
Specifies what happensto alog event if al filtersreturni gnor e, or if nofilters exist.
See section Filters for more information about how this option is used.

Defaultsto| og.

Handler Configuration
Logger API functions that apply to handler configuration are:

e get_handler _config/0,1

e set_handler_config/2,3

e update_handl er _config/2,3
e add_handler filter/3

Ericsson AB. All Rights Reserved.: Kernel | 7

1.2 Logging

e renove_handler filter/2
e update formatter _config/2,3

The configuration for a handler is a map with the following keys:
id = logger:handler_id()

Automatically inserted by L ogger. The value isthe same asthe Handl er | d specified when adding the handler,
and it cannot be changed.

nmodul e = nodul e()

Automatically inserted by Logger. The value is the same asthe Modul e specified when adding the handler, and
it cannot be changed.

| evel = logger:level() | all | none

Specifies the log level for the handler, that is, log events that are equally or more severe than this level, are
forwarded to the handler filters for this handler.

See section Log Level for alisting and description of possible log levels.

The log level is specified when adding the handler, or changed during runtime with, for instance,
| ogger: set_handl er _config(Handl erld,|evel, Level).

Defaultstoal | .

filters = [{Filterld,Filter}]
Specifies the handler filters.
e Filterld = logger:filter_id()
e Filter = logger:filter()

Handler filters are specified when adding the handler, or added or removed during runtime with
| ogger:add _handler filter/3and | ogger:renove_handl er _filter/2,respectively.

See Filters for more detailed information.
Defaultsto[] .
filter_default =1log | stop
Specifies what happensto alog event if al filtersreturni gnor e, or if no filters exist.
See section Filters for more information about how this option is used.
Defaultstol og.
formatter = {Fornmatter Modul e, Fornatt er Confi g}
Specifies aformatter that the handler can use for converting the log event term to a printable string.

e FormatterMdul e
e FormatterConfig

nmodul e()
| ogger: formatter _config()

The formatter information is specified when adding the handler. The formatter configuration can be changed
during runtime with | ogger : update_formatter_confi g/ 2, 3, or the complete formatter information
can be overwritten with, for instance, | ogger: set _handl er _confi g/ 3.

See section Formatters for more detailed information.

Defaultsto {1 ogger _formatter, Def aul t For matt er Confi g}. Seethe | ogger _fornatter(3)
manual page for information about this formatter and its default configuration.

config = tern()
Handler specific configuration, that is, configuration data related to a specific handler implementation.

8 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

The configuration for the built-in handlers is described in the |ogger_std_h(3) and
| ogger _di sk_| og_h(3) manua pages.

Noticethat| evel andfilt er s areobeyed by Logger itself before forwarding the log eventsto each handler, while
format t er and all handler specific options are left to the handler implementation.

Kernel Configuration Parameters
The following Kernel configuration parameters apply to Logger:
| ogger = [Confi g]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger _| evel ,
and the compatibility with SASL Error Logging, which is specified with | ogger _sasl _conpati bl e.

With this parameter, you can modify or disable the default handler, add custom handlers and primary logger
filters, set log levels per module, and modify the proxy configuration.

Conf i g isany (zero or more) of the following:

{handl er, default, undefined}
Disables the default handler. This allows another application to add its own default handler.
Only one entry of thistypeisallowed.

{handl er, Handl erld, Mdule, Handl erConfi g}
If Handl er | d isdef aul t , then this entry modifies the default handler, equivalent to calling

| ogger: renmove_handl er (def aul t)

followed by
| ogger: add_handl er (def aul t, Modul e, Handl er Confi g)

For all other values of Handl er | d, this entry adds a new handler, equivalent to calling
| ogger: add_handl er (Handl er 1 d, Mddul e, Handl er Confi g)

Multiple entries of thistype are allowed.
{filters, FilterDefault, [Filter]}
Adds the specified primary filters.

e FilterDefault = log | stop
e Filter = {Filterld, {FilterFun, FilterConfig}}

Equivalent to calling
| ogger:add_primary_filter(Filterld, {FilterFun, FilterConfig})

foreachFil ter.
Fi | t er Def aul t specifiesthe behaviour if al primary filtersreturni gnor e, see section Filters.
Only one entry of thistypeisallowed.

Ericsson AB. All Rights Reserved.: Kernel | 9

1.2 Logging

{modul e_| evel , Level, [Mbdule]}

Sets module log level for the given modules. Equivalent to calling

| ogger: set _nodul e_| evel (Mbdul e, Level)

for each Modul e.

Multiple entries of thistype are allowed.
{proxy, ProxyConfi g}

Sets the proxy configuration, equivalent to calling

| ogger : set _proxy_confi g(ProxyConfi g)

Only one entry of thistypeisallowed.
See section Configuration Examples for examples using thel ogger parameter for system configuration.
| ogger | evel = Level
Specifiesthe primary log level. Seetheker nel (6) manua page for more information about this parameter.
| ogger _sasl _conpatible = true | false

Specifies Logger's compatibility with SASL Error Logging. See the ker nel (6) manua page for more
information about this parameter.

Configuration Examples

The value of the Kernel configuration parameter | ogger isalist of tuples. It is possible to write the term on the
command line when starting an erlang node, but asthe term grows, abetter approach isto use the system configuration
file. Seetheconf i g(4) manua page for more information about thisfile.

Each of the following examples shows a simple system configuration file that configures Logger according to the
description.

Modify the default handler to print to afileinstead of st andar d_i o:

[{kernel,
[{logger,
[{handler, default, logger std h, % {handler, HandlerId, Module,
#{config => #{file => "log/erlang.log"}}} % Config}
131} 1.

Modify the default handler to print each log event asasingleline:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter, #{single line => true}}}}
13131

Modify the default handler to print the pid of the logging process for each log event:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter,
#{template => [time," ",pid," ",msg,"\n"]1}}}}
13131

10 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

Modify the default handler to only print errors and more severe log eventsto "log/erlang.log", and add another handler
to print all log eventsto "log/debug.log”.

[{kernel,
[{logger,
[{handler, default, logger std h,
#{level => error,
config => #{file => "log/erlang.log"}}},
{handler, info, logger std h,
#{level => debug,
config => #{file => "log/debug.log"}}}
131} 1.

1.2.7 Backwards Compatibility with error_logger
Logger provides backwards compatibility with er r or _| ogger inthe following ways:
API for Logging
Theer ror _| ogger API still exists, but should only beused by legacy code. It will beremoved in alater release.

Cdls to error_logger:error_report/1, 2, error_logger:error_nsg/ 1,2, and
corresponding functions for warning and info messages, are al forwarded to Logger as cals to
| ogger: | og(Level, Report, Met adat a) .

Level = error | warning | infoandistakenfromthefunctionname. Report containstheactual log
message, and Met adat a contains additional information which can be used for creating backwards compatible
eventsfor legacy er r or _| ogger event handlers, see section Legacy Event Handlers.

Output Format

Toget log eventsonthe sameformat asproducedby error _| ogger _tty handerror | ogger file_h,
usethedefault formatter, | ogger _f or mat t er , with configuration parameter | egacy_header settot r ue.
Thisisthe default configuration of thedef aul t handler started by Kernel.

Default Format of Log Events from OTP

By default, all log events originating from within OTP, except the former so called "SASL reports’, look the
same as before.

SASL Reports
By SASL reports we mean supervisor reports, crash reports and progress reports.

Prior to Erlang/OTP 21.0, these reports were only logged when the SASL application was running, and they were
printed trough SASL'sown event handlerssasl _report _tty handsasl _report file_h.

The destination of these log events was configured by SAS_ configuration parameters.
Due to the specific event handlers, the output format slightly differed from other log events.
Asof Erlang/OTP 21.0, the concept of SASL reportsisremoved, meaning that the default behaviour isasfollows:

e Supervisor reports, crash reports, and progress reports are no longer connected to the SASL application.

e Supervisor reports and crash reports areissued aser r or level log events, and are logged through the
default handler started by Kernel.

* Progressreportsareissued asi nf o level log events, and since the default primary log level isnot i ce,
these are not logged by default. To enable printing of progress reports, set the primary log level toi nf o.

e Theoutput format isthe samefor al log events.

If the old behaviour is preferred, the Kernel configuration parameter | ogger _sasl _conpati bl e can be
settot r ue. The SASL configuration parameters can then be used as before, and the SASL reports will only be
printed if the SASL application is running, through a second log handler named sasl .

Ericsson AB. All Rights Reserved.: Kernel | 11

1.2 Logging

All SASL reports have ametadatafield domai n whichissetto[ot p, sasl] . Thisfield can be used by filters
to stop or alow thelog events.

See section SAS. User's Guide for more information about the old SASL error logging functionality.
Legacy Event Handlers
To use event handlers written for er r or _| ogger , just add your event handler with

error _logger:add report handler/1,2.

Thisautomatically startsthe error logger event manager, and addser r or _| ogger asahandler to Logger, with
the following configuration:

#{level => info,
filter default => log,
filters => []}.

This handler ignores events that do not originate from theer r or _| ogger API, or from within OTP. This
meansthat if your code usesthe Logger API for logging, then your log eventswill be discarded by thishandler.

The handler is not overload protected.

1.2.8 Error Handling

Logger does, to a certain extent, check its input data before forwarding a log event to filters and handlers. It does,
however, not evaluate report callbacks, or check the validity of format strings and arguments. This means that all
filters and handlers must be careful when formatting the data of alog event, making sure that it does not crash due
to bad input data or faulty callbacks.

If afilter or handler still crashes, Logger will remove the filter or handler in question from the configuration, and print
ashort error message to the terminal. A debug event containing the crash reason and other detailsis also issued.

See section Log Message for more information about report callbacks and valid forms of log messages.

1.2.9 Example: Add a handler to log info events to file

When starting an Erlang node, the default behaviour isthat all log eventson level not i ce or more severe, arelogged
to the terminal viathe default handler. To also log info events, you can either change the primary log level toi nf o:

1> logger:set primary config(level, info).
ok

or set the level for one or afew modules only:
2> logger:set module level(mymodule, info).
ok

Thisalowsinfo eventsto pass through to the default handler, and be printed to the terminal aswell. If there are many
info events, it can be useful to print theseto afile instead.

First, set the log level of the default handler to not i ce, preventing it from printing info eventsto the terminal:

3> logger:set handler config(default, level, notice).
ok

12 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

Then, add a new handler which prints to file. You can use the handler module | ogger _st d_h, and configure it
tolog to file:

4> Config = #{config => #{file => "./info.log"}, level => info}.
#{config => #{file => "./info.log"}, level => info}

5> logger:add handler(myhandler, logger std h, Config).

ok

Sincefi | t er _def aul t defaultstol og, thishandler now receivesall log events. If you want info eventsonly inthe
file, you must add afilter to stop al non-info events. The built-in filter | ogger _filters: | evel /2 candothis:

6> logger:add handler filter(myhandler, stop non info,
{fun logger filters:level/2, {stop, neq, info}}).
ok

See section Filters for more information about thefiltersand thef i | t er _def aul t configuration parameter.

1.2.10 Example: Implement a handler

Section Handler Callback Functions in the logger(3) manual page describes the callback functions that can be
implemented for a Logger handler.

A handler callback module must export:

« log(Log, Config)

It can optionally also export some, or all, of the following:

e addi ng_handl er (Confi g)

* renoving_handl er (Confi g)

e« changi ng_config(SetOrUpdate, O dConfig, NewConfig)
« filter_config(Config)

When a handler is added, by for example a call to | ogger: add_handl er(1d, HModule, Config),
Logger first calls HVbdul e: addi ng_handl er (Confi g) . If this function returns { ok, Confi g1}, Logger
writes Confi gl to the configuration database, and the | ogger : add_handl er/ 3 cal returns. After this, the
handler isinstalled and must be ready to receive log events as callsto HVbdul e: | og/ 2.

A handler can be removed by caling | ogger:renmove_handler(ld). Logger «cdls
HVbdul e: renovi ng_handl er (Confi g), and removes the handler's configuration from the configuration
database.

When | ogger:set _handl er _config/ 2,3 or |ogger:update_handl er_config/2, 3 is caled,
Logger calls HVbdul e: changi ng_confi g(Set Or Updat e, O dConfi g, NewConfi g). If thisfunction
returns{ ok, NewConf i g1}, Logger writes NewConf i g1 to the configuration database.

When [ogger:get_config/0 or |ogger:get_handl er_config/0,1 is cdled, Logger cals
Hvodul e: filter_confi g(Confi g). Thisfunction must return the handler configuration where internal data
isremoved.

A simple handler that prints to the terminal can be implemented as follows:

-module(myhandlerl).
-export([log/2]).

log(LogEvent, #{formatter := {FModule, FConfig}}) ->
io:put chars(FModule:format(LogEvent, FConfig)).

Ericsson AB. All Rights Reserved.: Kernel | 13

1.2 Logging

Notice that the above handler does not have any overload protection, and all log events are printed directly from the
client process.

For information and examples of overload protection, please refer to section Protecting the Handler from Overload,
and the implementation of | ogger _std_h and| ogger _di sk_log_h.

Thefollowing is asimpler example of a handler which logs to afile through one single process:

-module(myhandler2).
-export([adding handler/1, removing handler/1, log/2]).
-export([init/1, handle call/3, handle cast/2, terminate/2]).

adding handler(Config) ->
MyConfig = maps:get(config,Config,#{file => "myhandler2.log"}),
{ok, Pid} = gen server:start(?MODULE, MyConfig, []),
{ok, Config#{config => MyConfig#{pid => Pid}}}.

removing handler(#{config := #{pid := Pid}}) ->
gen_server:stop(Pid).

log(LogEvent,#{config := #{pid := Pid}} = Config) ->
gen_server:cast(Pid, {log, LogEvent, Config}).

init(#{file := File}) ->
{ok, Fd} file:open(File, [append, {encoding, utf8}]),
{ok, #{file => File, fd => Fd}}.

handle call(, , State) ->

{reply, {error, bad request}, State}.

handle cast({log, LogEvent, Config}, #{fd := Fd} = State) ->
do log(Fd, LogEvent, Config),
{noreply, State}.

terminate(Reason, #{fd := Fd}) ->
= file:close(Fd),
ok.

do log(Fd, LogEvent, #{formatter := {FModule, FConfig}}) ->
String = FModule:format(LogEvent, FConfig),
io:put_chars(Fd, String).

1.2.11 Protecting the Handler from Overload

The default handlers, | ogger _std_h and | ogger _di sk_| og_h, feature an overload protection mechanism,
which makes it possible for the handlers to survive, and stay responsive, during periods of high load (when huge
numbers of incoming log requests must be handled). The mechanism works as follows:

Message Queue Length

The handler process keeps track of the length of its message queue and takes some form of action when the current
length exceeds a configurable threshold. The purpose is to keep the handler in, or to as quickly as possible get the
handler into, a state where it can keep up with the pace of incoming log events. The memory use of the handler
must never grow larger and larger, since that will eventually cause the handler to crash. These three thresholds, with
associated actions, exist:

sync_node_gl en

Aslong as the length of the message queue is lower than this value, all log events are handled asynchronously.
Thismeansthat the client process sending thelog event, by calling alog functionin the Logger API, does not wait
for aresponse from the handler but continues executing immediately after the event is sent. It is not affected by
thetimeit takes the handler to print the event to the log device. If the message queue grows larger than thisvalue,

14 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

the handler starts handling log events synchronoudly instead, meaning that the client process sending the event
must wait for aresponse. When the handler reduces the message queue to alevel below thesync_node_ql en
threshold, asynchronous operation is resumed. The switch from asynchronous to synchronous mode can slow
down the logging tempo of one, or afew, busy senders, but cannot protect the handler sufficiently in a situation
of many busy concurrent senders.

Defaultsto 10 messages.
drop_node_gl en

When the message queue grows larger than this threshold, the handler switches to a mode in which it drops all
new events that senders want to log. Dropping an event in this mode means that the call to the log function never
results in a message being sent to the handler, but the function returns without taking any action. The handler
keeps logging the events that are already in its message queue, and when the length of the message queue is
reduced to a level below the threshold, synchronous or asynchronous mode is resumed. Natice that when the
handler activates or deactivates drop mode, information about it is printed in the log.

Defaultsto 200 messages.
flush_qgl en

If the length of the message queue grows larger than this threshold, a flush (delete) operation takes place. To
flush events, the handler discards the messagesin the message queue by receiving them in aloop without logging.
Client processeswaiting for aresponse from asynchronouslog regquest receive areply from the handler indicating
that the request is dropped. The handler process increases its priority during the flush loop to make sure that no
new events are received during the operation. Notice that after the flush operation is performed, the handler prints
information in the log about how many events have been deleted.

Defaultsto 1000 messages.
For the overload protection algorithm to work properly, it is required that:
sync_node_gl en =< drop_node_qgl en =< flush_gl en
and that:
drop_node_qglen > 1
To disable certain modes, do the following:

 Ifsync_node_qgl enissettoO0, all log events are handled synchronously. That is, asynchronous logging is
disabled.

 Ifsync_node_ql en issettothesamevaueasdr op_node_ql en, synchronous modeisdisabled. That is,
the handler always runsin asynchronous mode, unless dropping or flushing isinvoked.

e Ifdrop_node_qgl enissettothesamevaueasf| ush_gl en, drop modeis disabled and can never occur.

During high load scenarios, the length of the handler message queue rarely grows in a linear and predictable way.
Instead, whenever the handler processis scheduled in, it can have an almost arbitrary number of messages waiting in
the message queue. It isfor this reason that the overload protection mechanism is focused on acting quickly, and quite
drastically, such asimmediately dropping or flushing messages, when alarge queue length is detected.

The values of the previoudly listed thresholds can be specified by the user. This way, a handler can be configured
to, for example, not drop or flush messages unless the message queue length of the handler process grows extremely
large. Notice that large amounts of memory can be required for the node under such circumstances. Another example
of user configuration is when, for performance reasons, the client processes must never be blocked by synchronous
log requests. It is possible, perhaps, that dropping or flushing events is still acceptable, since it does not affect the
performance of the client processes sending the log events.

A configuration example:

Ericsson AB. All Rights Reserved.: Kernel | 15

1.2 Logging

logger:add handler(my standard h, logger std h,
#{config => #{file => "./system info.log",
sync_mode _qlen => 100,
drop_mode qlen => 1000,
flush_gqlen => 2000}}).

Controlling Bursts of Log Requests

Large bursts of log events - many events received by the handler under a short period of time - can potentially cause
problems, such as:

* Logfilesgrow very large, very quickly.
e Circular logs wrap too quickly so that important data is overwritten.
* Write buffers grow large, which slows down file sync operations.

For this reason, both built-in handlers offer the possibility to specify the maximum number of events to be handled
within acertain timeframe. With thisburst control feature enabled, the handler can avoid choking thelog with massive
amounts of printouts. The configuration parameters are:

burst limt_enable
Vauet r ue enables burst control and f al se disablesit.
Defaultstot r ue.

burst _|inmt_max_count

This is the maximum number of eventsto handle withinaburst _|imt_w ndow ti ne timeframe. After
the limit is reached, successive events are dropped until the end of the time frame.

Defaultsto 500 events.

burst _limt_wi ndow tine
See the previous description of bur st _|imt_nmax_count.
Defaultsto 1000 milliseconds.

A configuration example:

logger:add handler(my disk log h, logger disk log h,
#{config => #{file => "./my disk log",
burst limit enable => true,
burst_limit max_count => 20,
burst_limit window time => 500}}).
Terminating an Overloaded Handler

It is possible that a handler, even if it can successfully manage peaks of high load without crashing, can build up a
large message queue, or use alarge amount of memory. The overload protection mechanism includes an automatic
termination and restart feature for the purpose of guaranteeing that a handler does not grow out of bounds. The feature
is configured with the following parameters:

overload kill enable
Valuet r ue enablesthe feature and f al se disablesit.
Defaultstof al se.

overload kill _qglen

This is the maximum allowed queue length. If the message queue grows larger than this, the handler processis
terminated.

Defaultsto 20000 messages.

16 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Logging

overload_kill_nem size

This is the maximum memory size that the handler process is alowed to use. If the handler grows larger than
this, the process is terminated.

Defaultsto 3000000 bytes.
overload kill restart _after

If the handler isterminated, it restarts automatically after adelay specified in milliseconds. Thevaluei nfi nity
prevents restarts.

Defaultsto 5000 milliseconds.

If the handler process is terminated because of overload, it prints information about it in the log. It also prints
information about when a restart has taken place, and the handler is back in action.

The sizes of the log events affect the memory needs of the handler. For information about how to limit the size of
log events, seethel ogger _f ormatt er (3) manual page.

1.2.12 Logger Proxy

The Logger proxy is an Erlang process which is part of the Kernel application's supervision tree. During startup, the
proxy process registers itself as the syst em | ogger , meaning that log events produced by the emulator are sent
to this process.

When alog event isissued on aprocess which hasitsgroup leader on aremote node, L ogger automatically forwardsthe
log event to the group leader's node. To achievethis, it first sendsthelog event as an Erlang message from the original
client processto the proxy on the local node, and the proxy in turn forwards the event to the proxy on the remote node.

When receiving alog event, either from the emulator or from a remote node, the proxy calls the Logger APl to log
the event.

Theproxy processisoverload protected in the sameway as described in section Protecting the Handler from Overload,
but with the following default values:

#{sync_mode qlen => 500,
drop_mode glen => 1000,
flush_glen => 5000,
burst limit enable => false,
overload kill enable => false}

For log events from the emulator, synchronous message passing mode is hot applicable, since all messages are passed
asynchronously by the emulator. Drop mode is achieved by setting the syst em | ogger to undef i ned, forcing
the emulator to drop events until it is set back to the proxy pid again.

The proxy uses er | ang: send_nosuspend/ 2 when sending log events to a remote node. If the message could
not be sent without suspending the sender, it is dropped. Thisisto avoid blocking the proxy process.

1.2.13 See Also

di sk_1 og(3), erlang(3), error_logger(3), | ogger (3), | ogger _di sk _|og h(3),
| ogger filters(3),logger formatter(3),logger_std h(3),sasl (6)

Ericsson AB. All Rights Reserved.: Kernel | 17

1.3 Logging Cookbook

1.3 Logging Cookbook

Using and especially configuring Logger can be difficult at times as there are many different options that can be
changed and often more than one way to achieve the same result. This User's Guide tries to help by giving many
different examples of how you can use logger.

For more examples of practical use-cases of using Logger, Fred Hebert's blog post Erlang/OTP 21's new logger is
agreat starting point.

If you find that some common Logger usage is missing from this guide, please open a pull request on github with
the suggested addition

1.3.1 Get Logger information
Print the primary Logger configurations.

1> logger:i(primary).
Primary configuration:
Level: notice
Filter Default: log
Filters:
(none)

Itisalso possible to fetch the configuration using | ogger : get _pri mary_config().

See also

* logger:i()
» Configuration in the Logging User's Guide

18 | Ericsson AB. All Rights Reserved.: Kernel

href

1.3 Logging Cookbook

Print the configuration of all handlers.

2> logger:i(handlers).
Handler configuration:
Id: default
Module: logger std h
Level: all
Formatter:
Module: logger formatter
Config:
legacy header: true
single line: false
Filter Default: stop
Filters:
Id: remote gl
Fun: fun logger filters:remote gl/2
Arg: stop
Id: domain
Fun: fun logger filters:domain/2
Arg: {log,super, [otp,sasl]}
Id: no domain
Fun: fun logger filters:domain/2
Arg: {log,undefined,[]}
Handler Config:
burst limit enable: true
burst limit max count: 500
burst limit window time: 1000
drop _mode qlen: 200
filesync repeat interval: no_ repeat
flush _glen: 1000
overload kill enable: false
overload kill mem size: 3000000
overload kill glen: 20000
overload kill restart after: 5000
sync_mode qlen: 10
type: standard io

You can also print the configuration of a specific handler using
| ogger:i (Handl er Nane), or fetch the configuration using | ogger: get handl er _config(), or
| ogger: get _handl er _confi g(Handl er Nane) for aspecific handler.

See also

« logger:i()
« Configuration in the Logging User's Guide

1.3.2 Configure the Logger

Where did my progress reports go?

In OTP-21 the default primary log level isnot i ce. The means that many log messages are by default not printed.
This includes the progress reports of supervisors. In order to get progress reports you need to raise the primary log
level toi nfo

$ erl -kernel logger level info

=PROGRESS REPORT==== 4-Nov-2019::16:33:11.742069 ===
application: kernel
started at: nonode@nohost

=PROGRESS REPORT==== 4-Nov-2019::16:33:11.746546 ===
application: stdlib
started at: nonode@nohost

Eshell V10.5.3 (abort with "G)

1>

Ericsson AB. All Rights Reserved.: Kernel | 19

1.3 Logging Cookbook

1.3.3 Configure Logger formatter

In order to fit better into your existing logging infrastructure Logger can format its logging messages any way you
want to. Either you can use the built-in formatter, or you can build your own.

Single line configuration

Since single line logging is the default of the built-in formatter you only have to provide the empty map as the
configuration. The example below usesthe sys. conf i g to change the formatter configuration.

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ formatter => {logger formatter, #{ }}}}1}1}].

$ erl -config sys
Eshell V10.5.1 (abort with "G)
1> logger:error("Oh noes, an error").
1962-10-03T11:07:47.466763-04:00 error: Oh noes, an error

However, if you just want to change it for the current session you can also do that.

1> logger:set handler config(default, formatter, {logger formatter, #{}}).
ok
2> logger:error("Oh noes, another error").
1962-10-04T15:34:02.648713-04:00 error: Oh noes, another error

See also

* logger_formatter's Configuration

» Formattersin the Logging User's Guide

e logger:set _handler _config/3

Add file and line number to log entries
Y ou can change what is printed to the log by using the formatter template:

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ formatter => {logger formatter,
#{ template => [time," ", file,":",line," ",level,": ",msg,"\n"] }}}}1}1}1.
$ erl -config sys
Eshell V10.5.1 (abort with ~G)
1> logger:error("0Oh noes, more errors",#{ file => "shell.erl", line => 1 }).
1962-10-05T07:37:44.104241+02:00 shell.erl:1 error: Oh noes, more errors

Note that file and line have to be added in the metadata by the caller of | ogger : | og/ 3 as otherwise Logger will
not know from where it was called. The file and line number are automatically added if you use the ?LOG_ERROR
macrosinker nel /i ncl ude/ | ogger. hrl .

See also

e logger_formatter's Configuration

* logger_formatter's Template

e Logger Macros

* Metadata in the Logging User's Guide

20 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging Cookbook

1.3.4 Configuring handlers

Print logs to a file
Instead of printing the logs to stdout we print them to arotating file log.

$ cat sys.config
[{kernel,
[{logger,
[{handler, default, logger std h,
#{ config => #{ file => "log/erlang.log",
max_no_bytes => 4096,
max_no_files => 5},
formatter => {logger formatter, #{}}}}1}1}1.

$ erl -config sys

Eshell V10.5.1 (abort with ~G)

1> logger:error("0Oh noes, even more errors").

ok

2> erlang:halt().

$ cat log/erlang.log

2019-10-07T11:47:16.837958+02:00 error: Oh noes, even more errors

See also
e logger_std h's Description
» Handlersinthe Logging User's Guide

Debug only handler

Add ahandler that prints debug log eventsto afile, while the default handler prints only upto not i ce level events
to standard out.

$ cat sys.config
[{kernel,
[{logger level, all},
{logger,
[{handler, default, logger std h,
#{ level => notice }},
{handler, debug, logger std h,
#{ filters => [{debug,{fun logger filters:level/2, {stop, neq, debug}}}I],
config => #{ file => "log/debug.log" } }}

131} 1.
$ erl -config sys
Eshell V10.5.1 (abort with "G)
1> logger:error("Oh noes, even more errors").
=ERROR REPORT==== 9-0ct-2019::14:40:54.784162 ===
Oh noes, even more errors
ok
2> logger:debug("A debug event").
ok
3> erlang:halt().
$ cat log/debug.log
2019-10-09T14:41:03.680541+02:00 debug: A debug event

In the configuration above we first raise the primary log level to max in order for the debug log events to get to the
handlers. Then we configure the default handler to only log notice and bel ow events, the default log level for ahandler
isal | . Then the debug handler is configured with afilter to stop any log message that is not a debug level message.

Itisalso possibleto do the same changesin an aready running systemusingthel ogger module. Thenyou do likethis:

Ericsson AB. All Rights Reserved.: Kernel | 21

1.3 Logging Cookbook

$ erl

1> logger:set handler config(default, level, notice).

ok

2> logger:add handler(debug, logger std h, #{
filters => [{debug,{fun logger filters:level/2, {stop, neq, debug}}}1],
config => #{ file => "log/debug.log" } }).

ok

3> logger:set primary config(level, all).

ok

Itisimportant that you do not raise the primary log level before adjusting the default handler'slevel as otherwise your
standard out may be flooded by debug log messages.

See also

* logger_std_h's Description

» Filtersinthe Logging User's Guide

1.3.5 Logging

What to log and how

The simplest way to log something is by using the Logger macros and give areport to the macro. For exampleif you
want to log an error:

?7LOG_ERROR(#{ what => http error, status => 418, src => ClientIP, dst => ServerIP }).
Thiswill print the following in the default log:

=ERROR REPORT==== 10-0ct-2019::12:13:10.089073 ===
dst: {8,8,4,4}
src: {8,8,8,8}
status: 418
what: http error

or the below if you use asingle line formatter:
2019-10-10T12:14:11.921843+02:00 error: dst: {8,8,4,4}, src: {8,8,8,8}, status: 418, what: http error

See also
e Log Messagein the Logging User's Guide

Report call-backs and printing of events

If you want to do structured logging, but still want to have some control of how the final log message is formatted you
cangivear eport _cb aspart of the metadata with your log event.

ReportCB = fun(#{ what := What, status := Status, src := Src, dst := Dst }) ->
{ok, #hostent{ h name = SrcName }} inet:gethostbyaddr(Src),
{ok, #hostent{ h name = DstName }} inet:gethostbyaddr(Dst),

{"What: ~p~nStatus: ~p~nSrc: ~s (~s)~nDst: ~s (~s)~n",
[What, Status, inet:ntoa(Src), SrcName, inet:ntoa(Dst), DstName]}

end,
?7LOG_ERROR(#{ what => http error, status => 418, src => ClientIP, dst => ServerIP },
#{ report cb => ReportCB }).

Thiswill print the following:

22 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging Cookbook

=ERROR REPORT==== 10-0ct-2019::13:29:02.230863 ===
What: http error

Status: 418

Src: 8.8.8.8 (dns.google)

Dst: 192.121.151.106 (erlang.org)

Note that the order that things are printed have changed, and also | added a reverse-dns lookup of the |P address. This
will not print as nicely when using asingle line formatter, however you can also use areport_cb fun with 2 arguments
where the second argument is the formatting options.

See also
* Log Messagein the Logging User's Guide
* Logger Report Callbacks

1.3.6 Filters

Filters are used to remove or change log events before they reach the handlers.

Process filters

If we only want debug messages from a specific processit is possible to do this with afilter like this:

%% Initial setup to use a filter for the level filter instead of the primary level
PrimaryLevel = maps:get(level, logger:get primary config()),
ok = logger:add primary filter(primary level,
{fun logger filters:level/2, {log, gteq, PrimaryLevel}}),
logger:set primary config(filter default, stop),
logger:set primary config(level, all),

%% Test that things work as they should
logger:notice("Notice should be logged"),
logger:debug("Should not be logged"),

%% Add the filter to allow PidToLog to send debug events

PidToLog = self(),

PidFilter = fun(LogEvent,) when PidTolLog =:= self() -> LogEvent;
(_LogEvent,) -> ignore end,

ok = logger:add primary filter(pid, {PidFilter,[]}),

logger:debug("Debug should be logged").

There is abit of setup needed to alow filters to decide whether a specific process should be allowed to log. Thisis
because the default primary log level is notice and it is enforced before the primary filters. So in order for the pid filter
to be useful we have to raise the primary log level to al | and then add alevel filter that only lets certain messages at
or greater than notice through. When the setup is done, it is simple to add afilter that allows a certain pid through.

Note that doing the primary log level filtering through afilter and not through the level is quite alot more expensive,
so make sure to test that your system can handle the extra load before you enable it on a production node.

See also

* Filtersinthe Logging User's Guide

e logger filters:level/2

e logger:set primary _config/2

Domains

Domains are used to specify which subsystem a certain log event originates from. The default handler will by default
only log events with the domain [ot p] or without a domain. If you would like to include SSL log events into the
default handler log you could do this:

Ericsson AB. All Rights Reserved.: Kernel | 23

1.3 Logging Cookbook

1> logger:add handler filter(default,ssl domain,
{fun logger filters:domain/2,{log,sub,[otp,ssl]}}).
2> application:ensure all started(ssl).
{ok, [crypto,asnl,public_key,ssl]}
3> ssl:connect("www.erlang.org", 443, [{log level,debug}]).
%% lots of text
See also
* Filtersinthe Logging User's Guide
« logger filters:donain/2

e logger:set _primary config/2

24 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging Cookbook

2 Reference Manual

Ericsson AB. All Rights Reserved.: Kernel | 25

kernel

kernel
Application

TheKernel application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and so on.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
* Codeloading

e Logging

* Global name service

e Supervision of Erlang/OTP

e Communication with sockets

e Operating system interface

Logger Handlers

Two standard logger handlers are defined in the Kernel application. These are described in the Kernel User's Guide,
andinthel ogger _std_h(3) andl ogger _di sk_I og_h(3) manual pages.

OS Signal Event Handler

Asynchronous OS signals may be subscribed to viathe Kernel applications event manager (see OTP Design Principles
andgen_event (3)) registeredaser | _si gnal _ser ver . A default signal handler isinstalled which handlesthe
following signals:

sigusrl

The default handler will halt Erlang and produce a crashdump with slogan "Received SIGUSR1". This is
equivalentto callinger | ang: hal t (" Recei ved SI GUSR1").

sigquit

The default handler will halt Erlang immediately. Thisis equivalent to callinger | ang: hal t () .
sigterm

The default handler will terminate Erlang normally. Thisis equivalent to callingi ni t: st op() .

Events
Any event handler added to er | _si gnal _ser ver must handle the following events.
si ghup
Hangup detected on controlling terminal or death of controlling process
si gquit
Quit from keyboard
si gabrt
Abort signal from abort
sigalrm

Timer signal from alarm

26 | Ericsson AB. All Rights Reserved.: Kernel

kernel

sigterm

Termination signal
sigusrl

User-defined signal 1
si gusr2

User-defined signal 2
sigchl d

Child process stopped or terminated
si gstop

Stop process
sigtstp

Stop typed at terminal

Setting OS signals are described in 0s: set _si gnal / 2.

Configuration

The following configuration parameters are defined for the Kernel application. For more information about

configuration parameters, seefileapp(4) .

distributed = [Distrib]

Specifieswhich applicationsthat are distributed and on which nodesthey are allowed to execute. In thisparameter:

e Distrib = {App, Nodes}

* App = aton()
« Time = integer()>0
e Nodes = [node() | {node(),...,node()}]

The parameter isdescribed inappl i cati on: | oad/ 2.

di st _aut o_connect = Val ue

{ App, Ti e, Nodes}

Specifies when nodes are automatically connected. If this parameter is not specified, a node is aways
automatically connected, for example, when a message is to be sent to that node. Val ue is one of:

never

Connectionsare never automatically established, they must be explicitly connected. Seenet _ker nel (3).

once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter

be explicitly connected. Seenet _ker nel (3).

perm ssions = [Pern

Specifies the default permission for applications when they are started. In this parameter:

e Perm = { Appl Nane, Bool }

e« Appl Nane = atom()
e Bool = bool ean()

Permissions are described inappl i cati on: perm t/ 2.

Ericsson AB. All Rights Reserved.: Kernel | 27

kernel

| ogger = [Config]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger _I evel ,
and the compatibility with SASL Error Logging, which is specified with | ogger _sasl _conpati bl e.

Thel ogger parameter isdescribed in section Logging in the Kernel User's Guide.
| ogger | evel = Level

Specifies the primary log level for Logger. Log events with the same, or a more severe level, pass through the
primary log level check. See section Logging in the Kernel User's Guide for more information about Logger and

log levels.
Level = emergency | alert | critical | error | warning | notice | info |
debug | all | none

To change the primary log level at runtime, use | ogger : set _primary_config(l evel, Level).
Defaultstonot i ce.
| ogger _sasl _conpatible = true | false

Specifiesif Logger behaves backwards compatible with the SASL error logging functionality from releases prior
to Erlang/OTP 21.0.

If this parameter is set to t r ue, the default Logger handler does not log any progress-, crash-, or supervisor
reports. If the SASL application is then started, it adds a Logger handler named sas| , which logs these events
according to values of the SASL configuration parameter sasl _error _| ogger andsasl _errl og type.

See section Deprecated Error Logger Event Handlers and Configuration in the sasl(6) manua page for
information about the SASL configuration parameters.

See section SASL Error Logging in the SASL User's Guide, and section Backwards Compatibility with
error_logger in the Kernel User's Guide for information about the SASL error logging functionality, and how
Logger can be backwards compatible with this.

Defaultsto f al se.

If this parameter issettot r ue, sasl _errl og_t ype indicates that progress reports shall be logged, and
the configured primary log level isnot i ce or more severe, then SASL automatically sets the primary log
level toi nf 0. That is, this setting can potentially overwrite the value of the Kernel configuration parameter
| ogger | evel . Thisis to alow progress reports, which have log level i nf 0, to be forwarded to the
handlers.

gl obal _groups = [GroupTupl €]
Defines global groups, see gl obal _gr oup(3) . Inthis parameter:

e GoupTuple = {GoupNane, [Node]} | {GoupName, PublishType, [Node]}
e GoupNane = atom()
e PublishType = normal | hidden
e Node = node()
i net _default_connect_options = [{Opt, Val}]

Specifies default options for connect sockets, seei net (3) .
inet_default listen options = [{Opt, Val}]
Specifies default optionsfor | i st en (and accept) sockets, seei net (3) .

28 | Ericsson AB. All Rights Reserved.: Kernel

kernel

{inet _dist _use_interface, ip_address()}

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of i p_addr ess(), seei net (3).

{inet_dist_listen_mn, First} and{inet_dist_listen_max, Last}
Definesthe Fi r st . . Last port range for the listener socket of a distributed Erlang node.
{inet _dist _|isten_options, Opts}
Defines alist of extra socket options to be used when opening the listening socket for a distributed Erlang node.
Seegen_tcp:listen/2.
{inet_dist_connect_options, Opts}
Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_t cp: connect/ 4.
i net_parse_error_log = silent
If set, nolog events are issued when erroneous lines are found and skipped in the various Inet configuration files.
inetrc = Fil enane

The name (string) of an Inet user configuration file. For details, see section | net Confi gur ati on in the
ERTS User's Guide.

net _setuptinme = SetupTi ne

Set upTi me must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is120. If higher values are specified, 120 isused. Default is 7 seconds if the variable is not specified, or if the
valueisincorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net tickintensity = NetTicklntensity

Net tick intensity specifies how many ticks to send during a net tick time period when no other data is sent
over a connection to another node. This aso determines how often to check for data from the other node. The
higher net tick intensity, the closer to the chosen net tick time period the node will detect an unresponsive node.
The net tick intensity defaults to 4. The value of Net Ti ckl nt ensi ty should be an integer in the range
4. .1000. If the Net Ti ckl nt ensi ty isnot an integer or an integer less than 4, 4 will silently be used. If
Net Ti ckl nt ensi ty isaninteger larger than 1000, 1000 will silently be used.

Note that all communicating nodes are expected to use the same net tick intensity as well as the same net
tick time.

War ning:

Be careful not to set a too high net tick intensity, since you can overwhelm the node with work if it is set
too high.

net _ticktine = NetTickTinme

Specifies the net tick time in seconds. This is the approximate time a connected hode may be unresponsive until
it is considered down and thereby disconnected.

Ericsson AB. All Rights Reserved.: Kernel | 29

kernel

Net tick time together with net tick intensity determines an interval Ti ckl nterval = Net Ti ckTi ne/
Net Ti ckl nt ensi ty. Once every Ti ckl nt er val seconds, each connected node is ticked if nothing has
been sent to it during that last Ti ckl nt er val seconds. A tick is asmall package sent on the connection. A
connected node is considered to be down if no ticks or payload packages have been received during the last
Net Ti ckl nt ensi ty number of Ti ckl nt erval seconds intervals. This ensures that nodes that are not
responding, for reasons such as hardware errors, are considered to be down.

As the availability is only checked every Ti ckl nt erval seconds, the actual time T a node have been
unresponsive when detected may vary between M nT and Max T, where:

MinT
MaxT

NetTickTime - NetTickTime / NetTickIntensity
NetTickTime + NetTickTime / NetTickIntensity

Net Ti ckTi e defaultsto 60 secondsand Net Ti ckl nt ensi t y defaultsto4. Thus, 45 < T < 75 seconds.

Noticethat all communicating nodesareto havethesameNet Ti ckTi me andNet Ti ckl nt ensi t y values
specified, as it determines both the frequency of outgoing ticks and the expected frequency of incominging
ticks.

Net TickTine needs to be a multiple of NetTickintensity. If the configured
vaues are not, Net TickTinme will internally be rounded up to the nearest millisecond.
net kernel :get _net ticktinme() will, however, report net tick time truncated to the nearest second.

Normally, aterminating node is detected immediately by the transport protocol (like TCP/IP).
prevent _overl appi ng_partitions = true | false

If enabled (t r ue), gl obal will actively prevent overlapping partitions from forming when connections are
lost between nodes. This fix is, however, currently disabled by default. See the gl obal (3) documentation
for more information.

shut down_ti meout = integer() | infinity

Specifiesthetimeappl i cati on_cont r ol | er waitsfor an application to terminate during node shutdown.
If the timer expires, appl i cati on_control | er brutally killsappl i cati on_mast er of the hanging
application. If this parameter is undefined, it defaultstoi nfinity.

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaultsto[] .

sync_nodes_optional = [NodeNane]

Specifies which other nodesthat can be alive for this node to start properly. If some nodein thislist does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaults to the empty list.

sync_nodes_tineout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter is undefined, no node synchronization is performed. Thisoption ensuresthat gl obal issynchronized.

start_distribution = true | fal se

Starts al distribution services, such as r pc, gl obal , and net _ker nel if the parameter is true. This
parameter isto be set to f al se for systems who want to disable all distribution functionality.

Defaultstot r ue.

30 | Ericsson AB. All Rights Reserved.: Kernel

kernel

start_dist_ac = true | false

Starts the di st _ac server if the parameter ist r ue. This parameter is to be set to t r ue for systems using
distributed applications.

Defaultstof al se. If this parameter is undefined, the server is started if parameter di st ri but ed isset.
start_boot _server = true | false

Startstheboot _ser ver if theparameterist r ue (seeer| _boot _server (3)). Thisparameter isto be set
tot r ue in an embedded system using this service.

Defaultstof al se.
boot _server_slaves = [Sl avel P]

If configuration parameter start _boot _server is true, this parameter can be used to initialize
boot server withalist of dave IP addresses:

Slavel P = string() | atom| {integer(),integer(),integer(),integer()},
where0 <= integer() <=255.
Examples of Sl avel Pinatom, string, and tuple form:
' 150. 236. 16. 70, "150, 236, 16, 70", {150, 236, 16, 70}.
Defaultsto[] .
start _disk log = true | false

Startsthe di sk_| og_ser ver if the parameter ist r ue (seedi sk_I og(3)). This parameter isto be set to
t r ue in an embedded system using this service.

Defaultstof al se.
start_pg2 = true | false

Startsthepg?2 server (seepg2(3)) if the parameter ist r ue. Thisparameteristobesettot r ue in an embedded
system that uses this service.

Defaultstof al se.
start _timer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (seet i ner (3)). Thisparameter istobesettotr ue in
an embedded system using this service.

Defaultstof al se.
shel |l _history = enabled | disabled

Specifies whether shell history should be logged to disk between usages of er | .
shel | _history_drop = [string()]

Specific log lines that should not be persisted. For example["q().", "init:stop()."] will alow to
ignore commands that shut the node down. Defaultsto[] .

shel |l _history file_bytes = integer()
how many bytes the shell should remember. By default, the valueis set to 512kb, and the minimal value is 50kb.
shel |l _history path = string()

Specifies where the shell history files will be stored. defaults to the user's cache directory as returned by
fil enane: basedi r(user_cache, "erlang-history").

Ericsson AB. All Rights Reserved.: Kernel | 31

kernel

shut down_func = {Mdd, Func}
Where:
e Md = atom()
e Func = atom()
Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as

Mod: Func(Reason) ,whereReason istheterminatereasonfor appl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.

source_search_rules = [DirRule] | [SuffixRul e]
Where:
e DirRule = {ObjDirSuffix, SrchirSuffix}
o SuffixRule = {Obj Suffix, SrcSuffix,[DirRule]}
e OhjDirsuffix = string()
e SrcDirSuffix = string()
e ObjSuffix = string()
e SrcSuffix = string()
Specifiesalist of rulesforuseby filelib:find file/2 filelib:find source/?2Ifthisissetto
some other value than the empty list, it replaces the default rules. Rules can be simple pairs of directory suffixes,
suchas{"ebin", "src"},whichareusedby filelib:find filel2,ortriplesspecifying separate

directory suffix rules depending on file name extensions, for example[{" . beant, ".erl", [{"ebin",
"src"}]},whichareusedbyfil elib:find source/2.Bothkindsof rulescan be mixed inthelist.

The interpretation of Cbj Di r Suf fi x and SrcDi r Suf fi x is as follows: if the end of the directory name
where an object islocated matches Cbj Di r Suf f i x, then the name created by replacing Obj Di r Suf f i x with
SrcDi rSuffix isexpanded by calling fil elib:wi |l dcard/1,andthefirst regular file found among the
matchesis the sourcefile.

Deprecated Configuration Parameters

In Erlang/OTP 21.0, anew API for logging was added. Theold er r or _| ogger event manager, and event handlers
running on this manager, still work, but they are no longer used by default.

The following application configuration parameters can still be set, but they are only used if the corresponding
configuration parameters for Logger are not set.

error_| ogger
Replaced by setting thet ype, and possibly f i | e and nodes parameters of the default | ogger _std_h
handler. Example:

erl -kernel logger '[{handler,default,logger std h,#{config=>#{file=>"/tmp/erlang.log"}}}]"

error_| ogger _format_depth
Replaced by setting the dept h parameter of the default handlers formatter. Example:

erl -kernel logger '[{handler,default,logger std h,#{formatter=>{logger formatter,#{legacy header=>true, ter

See Backwards compatibility with error_logger for more information.

See Also

app(4), application(3), code(3), disk log(3), erl_boot _server(3), erl _ddll(3),
file(3), global (3), global group(3), heart(3), inet(3), |ogger(3), net_kernel (3),
0s(3),pg2(3),rpc(3),seq_trace(3),user(3),timer(3)

32 | Ericsson AB. All Rights Reserved.: Kernel

app

app

Name

The application resour ce file specifies the resources an application uses, and how the application is started. There
must always be one application resource file called Appl i cat i on. app for each application Appl i cati on in
the system.

The fileisread by the application controller when an application is loaded/started. It is also used by the functionsin
syst ool s, for example when generating start scripts.
File Syntax

The application resource file is to be called Appl i cat i on. app, where Appl i cat i on is the application name.
Thefileisto belocated in directory ebi n for the application.

The file must contain a single Erlang term, which is called an application specification:

{application, Application,

[{description, Description},
{id, Id},

{vsn, Vsn},
{modules, Modules},
{maxP, MaxP},

{maxT, MaxT},
{registered, Names},

{included applications, Apps},
{applications, Apps},

{env, Env},

{mod, Start},

{start phases, Phases},

{runtime dependencies, RTDeps}]}.

Value Default
Application atom() -
Description string() "
Id string() "
Vsn string() "
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] [
Apps [Appl] []
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()
ApplicationVersion = string()

Application
Application name.

For the application controller, all keys are optional. The respective default values are used for any omitted keys.
Thefunctionsin syst ool s require more information. If they are used, the following keys are mandatory:
e description

Ericsson AB. All Rights Reserved.: Kernel | 33

app

* vsn
* nodul es
e registered
e applications
The other keys areignored by syst ool s.
description

A one-line description of the application.
id

Product identification, or similar.
vsn

Version of the application.
nodul es

All modules introduced by this application. syst ool s usesthislist when generating start scripts and tar files.
A module can only be defined in one application.

max P

Deprecated - isignored

Maximum number of processes alowed in the application.
maxT

Maximum time, in milliseconds, that the application is allowed to run. After the specified time, the application
terminates automatically.

regi stered

All names of registered processes started in this application. syst ool s uses this list to detect name clashes
between different applications.

i ncl uded_applications

All applicationsincluded by this application. When this application is started, all included applications are loaded
automatically, but not started, by the application controller. It is assumed that the top-most supervisor of the
included application is started by a supervisor of this application.

applications

All applications that must be started before this application is allowed to be started. syst ool s usesthislist to
generate correct start scripts. Defaults to the empty list, but notice that all applications have dependencies to (at
least) Kernel and STDLIB.

env

Configuration parameters used by the application. The value of a configuration parameter isretrieved by calling
appl i cation: get_env/ 1, 2. Thevauesin the application resource file can be overridden by valuesin a
configuration file (seeconfi g(4)) or by command-lineflags (seeerts: erl (1)).

nod
Specifies the application callback module and a start argument, seeappl i cati on(3).

Key nod is necessary for an application implemented as a supervision tree, otherwise the application controller
does not know how to start it. mod can be omitted for applications without processes, typically code libraries,
for example, STDLIB.

34 | Ericsson AB. All Rights Reserved.: Kernel

app

start_phases

A list of start phases and corresponding start arguments for the application. If this key
is present, the application master, in addition to the usual cal to Mdul e:start/2, aso
calls Modul e: start _phase(Phase, Type, PhaseArgs) for each stat phase defined by key
st art _phases. Only after thisextended start procedure, appl i cati on: start (Appl i cati on) returns.

Start phases can be used to synchronize startup of an application and its included applications. In this case, key
nmod must be specified as follows:
{mod, {application starter, [Module,StartArgs]}}

The application master then calls Modul e: start/ 2 for the primary application, followed by calls to
Modul e: st art _phase/ 3 for each start phase (as defined for the primary application), both for the primary
application and for each of itsincluded applications, for which the start phase is defined.

Thisimplies that for an included application, the set of start phases must be a subset of the set of phases defined
for the primary application. For more information, see OTP Design Principles.

runti me_dependenci es

A list of application versions that the application depends on. An example of such an application version is
"kernel - 3. 0". Application versions specified as runtime dependencies are minimum requirements. That is,
alarger application version than the one specified in the dependency satisfies the requirement. For information
about how to compare application versions, see section Versions in the System Principles User's Guide.

Notice that the application version specifies a source code version. One more, indirect, requirement is that the
installed binary application of the specified version is built so that it is compatible with the rest of the system.

Some dependencies can only be required in specific runtime scenarios. When such optional dependencies exist,
these are specified and documented in the corresponding "App" documentation of the specific application.

Therunti me_dependenci es key was introduced in OTP 17.0. The type of its value might be subject
to changes during the OTP 17 release.

All runtime dependencies specified in OTP applications during the OTP 17 release may not be completely
correct. Thisis actively being worked on. Declared runtime dependencies in OTP applications are expected
to be correct in OTP 18.

See Also
application(3),systool s(3)

Ericsson AB. All Rights Reserved.: Kernel | 35

application

application

Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped
asaunit, and that can be reused in other systems. This module interacts with application controller, aprocess started
at every Erlang runtime system. This module contains functions for controlling applications (for example, starting and
stopping applications), and functionsto accessinformation about applications (for example, configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file named Appl i cati on. app, where Appl i cat i on is the application name. For details about the
application specification, see app(4) .

Thismodule can a so be viewed as a behaviour for an application implemented according to the OTP design principles
asasupervision tree. The definition of how to start and stop thetreeisto belocated in an application callback module,
exporting a predefined set of functions.

For details about applications and behaviours, see OTP Design Principles.

Data Types
start type() =
normal |
{takeover, Node :: node()} |
{failover, Node :: node()}
restart type() = permanent | transient | temporary

tuple of(T)
A tuple where the elements are of type T.

Exports

ensure all started(Application) -> {ok, Started} | {error, Reason}

ensure _all started(Application, Type) ->
{ok, Started} | {error, Reason}

Types:
Application = atom()
Type = restart_type()
Started = [atom()]
Reason = term()

Equivalent to calling st art / 1, 2 repeatedly on al dependencies that are not yet started for an application.

Returns { ok, AppNames} for asuccessful start or for an aready started application (which is, however, omitted
from the AppNanes list).

Thefunctionreports{ error, {AppNane, Reason}} for errors, where Reason isany possible reason returned
by start/ 1, 2 when starting a specific dependency.

If an error occurs, the applications started by the function are stopped to bring the set of running applications back
toitsinitial state.

36 | Ericsson AB. All Rights Reserved.: Kernel

application

ensure started(Application) -> ok | {error, Reason}
ensure started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart_type()

Reason = term()
Equivalenttost art/ 1, 2 except it returns ok for already started applications.

get all env() -> Env
get all env(Application) -> Env
Types:
Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get all key() -> []1 | {ok, Keys}
get all key(Application) -> undefined | Keys

Types:
Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their valuesfor Appl i cat i on. If the argument is omitted, it defaults
to the application of the calling process.

If the specified application is not loaded, the function returns undef i ned. If the process executing the call does not
belong to any application, the function returns|[] .

get application() -> undefined | {ok, Application}
get application(PidOrModule) -> undefined | {ok, Application}

Types:
PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pi d or the module Mbdul e belongs. Providing no argument
isthesameascallingget _application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get env(Par) -> undefined | {ok, Val}

get env(Application, Par) -> undefined | {ok, Val}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 37

application

Application = Par = atom()
Val = term()

Returns the value of configuration parameter Par for Appl i cati on. If the application argument is omitted, it
defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

e The specified application is not loaded.

* Theconfiguration parameter does not exist.

» The process executing the call does not belong to any application.

get env(Application, Par, Def) -> Val
Types:

Application = Par = atom()

Def = Val = term()

Workslikeget _env/ 2 but returns value Def when configuration parameter Par does not exist.

get key(Key) -> undefined | {ok, Val}
get key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom()
Val = term()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument is omitted,
it defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

» The specified application is not loaded.
e The specification key does not exist.
» The process executing the call does not belong to any application.

load(AppDescr) -> ok | {error, Reason}
load (AppDescr, Distributed) -> ok | {error, Reason}
Types.

38 | Ericsson AB. All Rights Reserved.: Kernel

application

AppDescr = Application | (AppSpec :: application_spec())
Application = atom()

Distributed =
{Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of (node())]
Time = integer() >=1
Reason = term()
application spec() =
{application,
Application :: atom(),
AppSpecKeys :: [application_opt()]}
application opt() =
{description, Description :: string()} |
{vsn, Vsn :: string()} |
{id, Id :: string()} |
{modules, [Module :: module()]1} |
{registered, Names :: [Name :: atom()1} |
{applications, [Application :: atom()1} |
{included applications, [Application :: atom()]} |
{env, [{Par :: atom(), Val :: term()}1} |
{start_phases,
[{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
{maxT, MaxT :: timeout()} |
{maxP, MaxP :: integer() >= 1 | infinity} |
{mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It also loads the application
specifications for any included applications. Notice that the function does not load the Erlang object code.

The application can be specified by itsname Appl i cat i on. Inthiscase, the application controller searchesthe code
path for the application resource file Appl i cat i on. app and loads the specification it contains.

The application specification can also be specified directly as a tuple AppSpec, having the format and contents as
describedinapp(4) .

IfDi stributed == {Application,[Tine,] Nodes}, the application becomes distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the application name (same as in the first argument). If a node crashes and Ti e is specified, the application
controller waits for Ti me milliseconds before attempting to restart the application on another node. If Ti e is not
specified, it defaultsto O and the application is restarted immediately.

Nodes isalist of node names where the application can run, in priority from left to right. Node names can be grouped
using tuplesto indicate that they have the same priority.

Example:
Nodes = [cpl@cave, {cp2@cave, cp3@cave}]

This means that the application is preferably to be started at cpl@ave. If cpl@ave is down, the application is
to be started at cp2@ave or cp3@ave.

IfDi stributed == def aul t,thevauefor theapplicationintheKernel configuration parameter di st ri but ed
isused.

Ericsson AB. All Rights Reserved.: Kernel | 39

application

loaded applications() -> [{Application, Description, Vsn}]

Types:
Application = atom()
Description = Vsn = string()

Returnsalist with information about the applications, and included applications, which areloaded using | oad/ 1, 2.
Appl i cati on isthe application name. Descri pt i on and Vsn are the values of their descri pti on andvsn
application specification keys, respectively.

set env(Config) -> ok
set env(Config, Opts) -> ok
Types:
Config = [{Application, Env}]
Application = atom()
Env = [{Par :: atom(), Val :: term()}]
Opts = [{timeout, timeout()} | {persistent, boolean()}]

Sets the configuration Conf i g for multiple applications. It is equivalent to calling set _env/ 4 on each application
individially, except it is more efficient. The given Conf i g isvalidated before the configuration is set.

set _env/ 2 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i meout canbe specifiedif another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 2 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

If an application is given more than once or if an application has the same key given more than once, the behaviour is
undefined and a warning message will be logged. In future releases, an error will be raised.

set _env/1lisequivaenttoset _env(Config, []).

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

permit (Application, Permission) -> ok | {error, Reason}
Types:

Application = atom()

Permission = boolean()

Reason = term()

Changes the permission for Appl i cati on to run at the current node. The application must be loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application isset to f al se, st art returns ok but the application is
not started until the permissionissettot r ue.

If the permission of a running application is set to f al se, the application is stopped. If the permission later is set
totrue, itisrestarted.

40 | Ericsson AB. All Rights Reserved.: Kernel

application

If the application isdistributed, setting the permissiontof al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (seel oad/ 2).

The function does not return until the application is started, stopped, or successfully moved to another node. However,
in some caseswhere permissionissettot r ue, the function returns ok even though the application isnot started. This
is true when an application cannot start because of dependencies to other applications that are not yet started. When
they are started, Appl i cat i on is started aswell.

By default, all applications are loaded with permissiont r ue on all nodes. The permission can be configured using
the Kernel configuration parameter per i ssi ons.

set env(Application, Par, Val) -> ok
set _env(Application, Par, Val, Opts) -> ok

Types:
Application = Par = atom()
Val = term()

Opts = [{timeout, timeout()} | {persistent, boolean()}]
Setsthe value of configuration parameter Par for Appl i cati on.

set _env/ 4 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i neout canbe specifiedif another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

If set _env/ 4 is caled before the application is loaded, the application environment values specified in file
Appl i cati on. app override the ones previously set. Thisis also true for application reloads.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 4 are not overridden by

those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types:
Application = atom()
Type = restart _type()
Reason = term()
Starts Appl i cati on. If it is not loaded, the application controller first loads it using | oad/ 1. It ensures that

any included applications are loaded, but does not start them. That is assumed to be taken care of in the code for
Appl i cation.

The application controller checks the value of the application specification key appl i cat i ons, to ensure that all
applications needed to be started before this application arerunning. Otherwise, { er r or, { not _st art ed, App}}
is returned, where App is the name of the missing application.

The application controller then creates an application master for the application. The application master becomes
the group leader of al the processes in the application. 1/0 is forwarded to the previous group leader, though, thisis

Ericsson AB. All Rights Reserved.: Kernel | 41

application

just away to identify processes that belong to the application. Used for example to find itself from any process, or,
reciprocally, to kill them all when it terminates.

The application master starts the application by calling the application callback function Modul e: start/ 2 as
defined by the application specification key nod.

Argument Ty pe specifies the type of the application. If omitted, it defaultstot enpor ary.
e |f apermanent application terminates, all other applications and the entire Erlang node are also terminated.

« « [fatransient application terminateswith Reason == nor mal , thisisreported but no other applications
are terminated.
« |f atransient application terminates abnormally, al other applications and the entire Erlang node are also
terminated.

» |If atemporary application terminates, thisis reported but no other applications are terminated.

Notice that an application can always be stopped explicitly by caling st op/ 1. Regardless of the type of the
application, no other applications are affected.

Notice also that the transient type is of little practical use, because when a supervision tree terminates, the reason is
set to shut down, not nor nal .

start _type() -> StartType | undefined | local
Types:
StartType = start_type()

This function is intended to be called by a process belonging to an application, when the application is started, to
determine the start type, whichisSt art Type or | ocal .

For adescription of St art Type, see Modul e: start/ 2.

| ocal isreturned if only parts of the application are restarted (by a supervisor), or if the function is called outside
astartup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
StopsAppl i cat i on. Theapplication master callshMbdul e: pr ep_st op/ 1, if such afunction isdefined, and then
tellsthetop supervisor of the application to shut down (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Mbdul e isthe callback module as defined by the application specification key nod.

Last, the application master terminates. Notice that all processes with the application master as group leader, that is,
processes spawned from a process bel onging to the application, are also terminated.

When stopped, the application is still loaded.

To stop adistributed application, st op/ 1 must be called on all nodeswhere it can execute (that is, on all nodeswhere
it has been started). The call to st op/ 1 on the node where the application currently executes stopsits execution. The
application is not moved between nodes, as st op/ 1 is called on the node where the application currently executes
beforest op/ 1 is called on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}
Types:

42 | Ericsson AB. All Rights Reserved.: Kernel

application

Application = atom()

Type = restart _type()

Reason = term()
Takes over the distributed application Appl i cati on, which executes at another node Node. At the current
node, the application isrestarted by calling Mbdul e: st art ({t akeover, Node}, St art Args) . Modul e and
St art Ar gs areretrieved from the loaded application specification. The application at the other node is not stopped

until the startup is completed, that is, when Modul e: st art/ 2 and any callsto Modul e: st art _phase/ 3 have
returned.

Thus, two instances of the application run simultaneously during the takeover, so that data can be transferred from the
old to the new instance. If thisis not an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at least the top supervisor must remain alive.

For adescription of Type, seestart/ 1, 2.

unload(Application) -> ok | {error, Reason}
Types:

Application = atom()

Reason = term()

Unloads the application specification for Appli cati on from the application controller. It also unloads the
application specificationsfor any included applications. Notice that the function does not purge the Erlang object code.

unset env(Application, Par) -> ok
unset env(Application, Par, Opts) -> ok
Types:
Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]
Removes the configuration parameter Par and itsvalue for Appl i cat i on.

unset _env/ 2 uses the standard gen_ser ver time-out value (5000 ms). Option t i nmeout can be specified if
another time-out value is useful, for example, in situations where the application controller is heavily loaded.

unset _env/ 3 aso allows the persistent option to be passed (seeset _env/ 4).

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

which applications() -> [{Application, Description, Vsn}]
which applications(Timeout) -> [{Application, Description, Vsn}]
Types:

Ericsson AB. All Rights Reserved.: Kernel | 43

application

Timeout = timeout()
Application = atom()
Description = Vsn = string()
Returns a list with information about the applications that are currently running. Appl i cat i on isthe application

name. Descri pti on and Vsn are the values of their descri pti on and vsn application specification keys,
respectively.

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver time-out value (5000 ms). A Ti neout argument can
be specified if another time-out value is useful, for example, in situations where the application controller is heavily
loaded.

Callback Module

The following functions are to be exported from an appl i cat i on callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types.
Start Type = start_type()
StartArgs = tern()
Pid = pid()

State = term)

This function is called whenever an application is started using st art/ 1, 2, and is to start the processes of the
application. If the application is structured according to the OTP design principles as a supervision tree, this means
starting the top supervisor of the tree.

St ar t Type defines the type of start:

e nornal ifitisanormal startup.

* nornal asoif theapplication is distributed and started at the current node because of afailover from another
node, and the application specification key st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node because of a takeover from
Node, either becauset akeover / 2 has been called or because the current node has higher priority than Node.

« {failover, Node} if theapplication is distributed and started at the current node because of afailover from
Node, and the application specification key st art _phases /= undefi ned.
Start Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function is to return { ok, Pi d} or {ok, Pi d, St at e}, where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If the application is stopped later, St at e is passed to
Modul e: prep_stop/ 1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}
Types.

Phase = aton()

Start Type = start_type()

PhaseArgs = term))

Pid = pid()

44 | Ericsson AB. All Rights Reserved.: Kernel

application

State = state()

Starts an application with included applications, when synchronization is needed between processes in the different
applications during startup.

The start phases are defined by the application specificationkey st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

For adescription of St art Type, see Modul e: start/ 2.

Module:prep stop(State) -> NewState
Types:
State = NewState = term()
Thisfunctioniscalled when an applicationisabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
ispassed to Modul e: st op/ 1.

Thefunctionisoptional. If it isnot defined, the processes are terminated and then Modul e: st op(St at e) iscaled.

Module:stop(State)
Types:
State = term))

This function is called whenever an application has stopped. It isintended to be the opposite of Modul e: start/ 2
and isto do any necessary cleaning up. Thereturn value isignored.

St at e isthe return value of Modul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
the return value of Modul e: start/ 2.

Module:config change(Changed, New, Removed) -> ok
Types:

Changed = [{Par, Val }]

New = [{Par, Val }]

Removed = [Par]

Par = atom()

Val = term()

Thisfunction is called by an application after a code replacement, if the configuration parameters have changed.
Changed isalist of parameter-value tuplesincluding all configuration parameters with changed values.
Newisalist of parameter-value tuplesincluding all added configuration parameters.

Renoved isalist of all removed parameters.

See Also
OTP Design Principles, kernel(6), app(4)

Ericsson AB. All Rights Reserved.: Kernel | 45

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types

cookie() = atom()

Exports

cookie() -> Cookie
Types.
Cookie = cooki e()
Useerl ang: get _cooki e() in ERTSinstead.

cookie(TheCookie) -> true

Types.
TheCookie = Cookie | [Cookie]
The cookie can also be specified as a list with a single atom element.
Cookie = cooki e()

Useerl ang: set _cooki e(node(), Cookie) in ERTSinstead.

is_auth(Node) -> yes | no
Types:
Node = node()

Returnsyes if communication with Node is authorized. Notice that a connection to Node is established in this case.
Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinksit has).

Usenet _adm pi ng(Node) instead.

node cookie([Node, Cookiel]) -> yes | no
Types.

Node = node()

Cooki e = cooki e()

Equivalent tonode_cooki e(Node, Cooki e) .

node cookie(Node, Cookie) -> yes | no
Types:

Node = node()

Cookie = cookie()

Sets the magic cookie of Node to Cooki e and verifies the status of the authorization. Equivalent to calling
erl ang: set _cooki e(Node, Cooki e),followed by aut h: i s_aut h(Node) .

46 | Ericsson AB. All Rights Reserved.: Kernel

code

code

Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in interactive or embedded mode. Which one is decided by the command-line
flag - node:

% erl -mode interactive

The modes are as follows:

* In interactive mode, which is default, only some code is loaded during system startup, basically the modules
needed by the runtime system. Other code is dynamically loaded when first referenced. When a call to afunction
in acertain moduleismade, and the moduleis not loaded, the code server searchesfor and triesto load the module.

* |n embedded mode, modules are not auto loaded. Trying to use a module that has not been loaded resultsin an
error. This mode is recommended when the boot script loads all modules, asitistypicaly donein OTP releases.
(Code can still be loaded later by explicitly ordering the code server to do o).

To prevent accidentally rel oading of modules affecting the Erlang runtime system, directoriesker nel , st dl i b, and
conpi | er areconsidered sticky. This means that the system issues a warning and rejects the request if a user tries
to reload amodule residing in any of them. The feature can be disabled by using command-line flag - nost i ck.

Code Path

In interactive mode, the code server maintains a search path, usually called the code path, consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under library
directory $OTPROOT/ | i b, where $OTPROOT is the installation directory of Erlang/OTP, code: root _dir ().
Directories can benamed Nane[- VVsn] and the code server, by default, choosesthe directory with the highest version
number among those having the same Nane. Suffix - Vsn is optional. If an ebi n directory exists under Nane| -
Vsn] , thisdirectory is added to the code path.

Environment variable ERL_ LI BS (defined in the operating system) can be used to define more library directories to
be handled in the same way as the standard OTP library directory described above, except that directories without an
ebi n directory are ignored.

All application directories found in the additional directories appears before the standard OTP applications, except for
the Kernel and STDLIB applications, which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the same name in OTP, except for modules
in Kernel and STDLIB.

Environment variable ERL_ LI BS (if defined) is to contain a colon-separated (for Unix-like systems) or semicolon-
separated (for Windows) list of additional libraries.

Example:
On aUnix-like system, ERL_ LI BS can be set to the following

/usr/local/jungerl:/home/some user/my erlang lib

On Windows, use semi-colon as separator.

Ericsson AB. All Rights Reserved.: Kernel | 47

code

Loading of Code From Archive Files

The support for loading code from archive files is experimental. The purpose of releasing it before it is ready is
to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in a future release. The
functionl i b_dir/ 2 andflag- code_pat h_choi ce areaso experimental.

The Erlang archives are ZI P fileswith extension . ez. Erlang archives can also beenclosedinescri pt fileswhose
file extension is arbitrary.

Erlang archive files can contain entire Erlang applications or parts of applications. The structure in an archive file
is the same as the directory structure for an application. If you, for example, create an archive of esi a- 4. 4. 7,
the archive file must be named mesi a- 4. 4. 7. ez and it must contain atop directory named resi a- 4. 4. 7. If
the version part of the name is omitted, it must also be omitted in the archive. That is, amrmesi a. ez archive must
contain ammesi a top directory.

An archivefile for an application can, for example, be created like this:

zip:create("mnesia-4.4.7.ez",
["mnesia-4.4.7"],
[{cwd, code:lib dir()},
{compress, all},
{uncompress, [".beam",".app"1}]1).

Any file in the archive can be compressed, but to speed up the access of frequently read files, it can be a good idea
to store beamand app files uncompressed in the archive.

Normally the top directory of an application islocated in library directory $OTPROOT/ | i b or in adirectory referred
to by environment variable ERL_ LI BS. At startup, when theinitial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebi n directories in archives to the code path. The code path
then contains paths to directories that look like $OTPROOT/ | i b/ mesi a. ez/ mesi a/ ebi n or $OTPROOT/
i b/ Mmesia-4.4.7.ez/ mesia-4.4.7/ebin.

The code server uses module er| _prim | oader in ERTS (possibly through erl boot server) to read
code files from archives. However, the functionsin er| _pri m | oader can aso be used by other applications
to read files from archives. For example, the call erl _prim |l oader:list_dir("/otp/root/lib/
mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ exanpl es/ bench) " would list the contents of a directory inside an
archive. Seeer| _prim.| oader(3).

An application archive file and aregular application directory can coexist. This can be useful when it is needed to have
parts of the application asregular files. A typical caseisthepr i v directory, which must reside as aregular directory
tolink in drivers dynamically and start port programs. For other applicationsthat do not need this, directory pri v can
reside in the archive and the files under the directory pr i v can beread througher| _pri m | oader.

When a directory is added to the code path and when the entire code path is (re)set, the code server decides which
subdirectories in an application that are to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the code path is not updated (possibly to the
same path as before, to trigger the directory resolution update).

For each directory on the second level in the application archive (ebi n, priv, src, and so on), the code
server first chooses the regular directory if it exists and second from the archive. Function code: lib_dir/2
returns the path to the subdirectory. For example, code: i b_di r (megaco, ebi n) can return / ot p/ r oot /
i b/ megaco-3.9.1.1. ez/ megaco-3.9. 1. 1/ ebi n whilecode: | i b_di r (negaco, pri v) can return
/otp/root/lib/megaco-3.9.1.1/priv.

48 | Ericsson AB. All Rights Reserved.: Kernel

code

Whenanescri pt filecontainsan archive, there are no restrictions on the name of theescr i pt and no restrictions
on how many applications that can be stored in the embedded archive. Single Beam files can also reside on the top
level in the archive. At startup, the top directory in the embedded archive and all (second level) ebi n directoriesin
the embedded archive are added to the code path. Seeert s: escri pt (1) .

When the choice of directories in the code path is stri ct, the directory that ends up in the code path is
exactly the stated one. This means that if, for example, the directory $OTPROOT/ | i b/ mmesi a- 4. 4. 7/ ebi nis
explicitly added to the code path, the code server does not load files from $OTPROOT/ | i b/ mesi a- 4. 4. 7. ez/
mmesi a- 4. 4. 7/ ebi n.

This behavior can be controlled through command-line flag - code_pat h_choi ce Choi ce. If theflagisset to
r el axed, the code server instead chooses a suitable directory depending on the actua file structure. If a regular
application ebi n directory exists, it is chosen. Otherwise, the directory ebi n in the archive is chosen if it exists. If
neither of them exists, the original directory is chosen.

Command-lineflag- code_pat h_choi ce Choi ce alsoaffectshow modulei ni t interpretstheboot scri pt.
The interpretation of the explicit code pathsin the boot scri pt canbestrict orrel axed. Itisparticularly
useful to set the flag to r el axed when elaborating with code loading from archives without editing the boot
scri pt.Thedefaultisr el axed. Seeerts:init(3).

Current and Old Code

The code for amodule can exist in two variantsin asystem: current code and old code. When amoduleisloaded into
the system for the first time, the module code becomes 'current' and the global export tableis updated with references
to al functions exported from the module.

If then a new instance of the module is loaded (for example, because of error correction), the code of the previous
instance becomes'old’, and all export entriesreferring to the previousinstance are removed. After that, the new instance
isloaded as for the first time, and becomes 'current'.

Both old and current code for a module are valid, and can even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence, a global call cannot be made to an exported function in old
cade, but old code can still be evaluated because of processes lingeringin it.

If athird instance of the module isloaded, the code server removes (purges) the old code and any processes lingering
in it are terminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, see
section Compilation and Code Loading in the Erlang Reference Manual.

Argument Types and Invalid Arguments

Module and application names are atoms, while file and directory names are strings. For backward compatibility
reasons, some functions accept both strings and atoms, but a future release will probably only allow the arguments
that are documented.

Functions in this module generally fail with an exception if they are passed an incorrect type (for example, an integer
or atuple where an atom is expected). An error tuple is returned if the argument type is correct, but there are some
other errors (for example, a non-existing directory is specifiedto set _pat h/ 1).

Error Reasons for Code-Loading Functions

Functions that load code (such as| oad_fi | e/ 1) will return{ err or, Reason} if the load operation fails. Here
follows a description of the common reasons.

badfil e

The object code has an incorrect format or the module name in the object code is not the expected module name.

Ericsson AB. All Rights Reserved.: Kernel | 49

code

nofile

No file with object code was found.
not _pur ged

The object code could not be loaded because an old version of the code already existed.
on_load failure

The module has an -on_load function that failed when it was called.
sticky_directory

The object code resides in a sticky directory.

Data Types
load ret() =
{error, What :: load_error_rsn()} |

{module, Module :: module()}

load error rsn() =
badfile | nofile | not purged | on load failure |
sticky directory

prepared code()
An opaque term holding prepared code.

Exports

set path(Path) -> true | {error, What}

Types:
Path = [Dir :: file:filenane()]
What = bad directory
Sets the code path to the list of directories Pat h.
Returns:
true
If successful

{error, bad_directory}
If any Di r isnot adirectory name

get path() -> Path

Types.
Path = [Dir :: file:filenane()]
Returns the code path.

add path(Dir) -> add_path_ret()
add pathz(Dir) -> add_path_ret()
Types:

50 | Ericsson AB. All Rights Reserved.: Kernel

code

Dir = file:filenane()
add path ret() = true | {error, bad directory}

Adds Di r to the code path. The directory is added as the last directory in the new path. If Di r already existsin the
path, it is not added.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add patha(Dir) -> add_path_ret()
Types:
Dir = file:filenanme()
add path ret() = true | {error, bad directory}
AddsDi r to the beginning of the code path. If Di r exists, it is removed from the old position in the code path.

Returnst r ue if successful, or{error, bad_directory} if D r isnotthe name of adirectory.

add paths(Dirs) -> ok
add pathsz(Dirs) -> ok
Types:
Dirs = [Dir :: file:filename()]
Addsthe directoriesin Di r s to the end of the code path. If aDi r exists, it is not added.
Always returns ok, regardless of the validity of each individual Di r .

add pathsa(Dirs) -> ok
Types:
Dirs = [Dir :: file:filename()]
TraversesDi r s and addseach Di r to the beginning of the code path. This means that the order of Di r s isreversed

in the resulting code path. For example, if you add [Di r 1, Di r 2], the resulting path will be [Di r 2, Di r 1|
A dCodePat h] .

If aDi r aready existsin the code path, it is removed from the old position.
Always returns ok, regardless of the validity of each individual Di r .

del path(NameOrDir) -> boolean() | {error, What}
Types:

NameOrDir = Name | Dir

Name = atom()

Dir = file:filename()

What = bad name

Deletes a directory from the code path. The argument can be an atom Nane, in which case the directory with the
name. ../ Name[- Vsn] [/ ebi n] is deleted from the code path. Also, the complete directory name Di r can be
specified as argument.

Returns:
true
If successful

Ericsson AB. All Rights Reserved.: Kernel | 51

code

fal se

If the directory is not found
{error, bad_nane}

If the argument isinvalid

replace path(Name, Dir) -> true | {error, What}
Types.
Name = atom()
Dir = file:filenane()
What = bad directory | bad name | {badarg, term()}

Replaces an old occurrence of adirectory named. . . / Nane[- Vsn] [/ ebi n] inthecode path, withDi r . If Nanme
doesnot exist, it addsthenew directory Di r lastinthe code path. The new directory must alsobenamed. . . / Naneg][-
Vsn] [/ ebi n] . Thisfunctionisto be used if a new version of the directory (library) is added to arunning system.

Returns:
true
If successful
{error, bad_nane}
If Narre is not found
{error, bad_directory}
If Di r does not exist
{error, {badarg, [Nanme, Dir]}}
If Narre or Di r isinvalid

load file(Module) -> load_ret()

Types:
Module = module()
load ret() =

{error, What :: load_error_rsn()} |
{module, Module :: module()}

Tries to load the Erlang module Modul e, using the code path. It looks for the object code file with an extension
corresponding to the Erlang machine used, for example, Modul e. beam Theloading failsif the module name found
in the object code differsfrom the name Modul e. | oad_hi nar y/ 3 must be used to load object code with amodule
name that is different from the file name.

Returns{ nodul e, Mbodul e} if successful, or { error, Reason} if loadingfails. See Error Reasonsfor Code-
Loading Functions for a description of the possible error reasons.

load abs(Filename) -> load_ret()
Types.

52 | Ericsson AB. All Rights Reserved.: Kernel

code

Filename = file:filenane()

load ret() =
{error, What :: load_error_rsn()} |
{module, Module :: module()}

loaded filename() =
(Filename :: file:filename()) | | oaded_ret_atons()

loaded ret atoms() = cover compiled | preloaded
Sameas!| oad_fil e(Modul e), but Fi | enane isan absolute or relative filename. The code path is not searched.

It returns avalue in the sasme way as| oad_fil e/ 1. Notice that Fi | enanme must not contain the extension (for
example, . beam) because| oad_abs/ 1 addsthe correct extension.

ensure loaded(Module) -> {module, Module} | {error, What}
Types:
Module = module()
What = embedded | badfile | nofile | on load failure
Triestoload amoduleinthesameway asl oad_f i | e/ 1, unlessthemoduleisalready loaded. However, in embedded

mode it does not load a module that is not aready loaded, but returns{ error, enbedded} instead. See Error
Reasons for Code-Loading Functions for a description of other possible error reasons.

load binary(Module, Filename, Binary) ->
{module, Module} | {error, What}

Types.
Module = module()
Filename = | oaded fil enane()
Binary = binary()
What = badarg | | oad_error_rsn()

loaded filename() =
(Filename :: file:filenanme()) | | oaded_ret_atons()

loaded ret atoms() = cover_compiled | preloaded

Thisfunction can be used to |oad object code on remote Erlang nodes. Argument Bi nar y must contain object codefor
Modul e. Fi | enane isonly used by the code server to keep arecord of from which file the object code for Modul e
comes. Thus, Fi | enane isnot opened and read by the code server.

Returns{ nodul e, Mbdul e} if successful, or { error, Reason} if loadingfails. See Error Reasonsfor Code-
Loading Functions for a description of the possible error reasons.

atomic load(Modules) -> ok | {error, [{Module, What}]}
Types:

Ericsson AB. All Rights Reserved.: Kernel | 53

code

Modules = [Module | {Module, Filename, Binary}]
Module = module()

Filename = file:filenane()

Binary = binary()

What =

badfile | nofile | on load not allowed | duplicated |
not purged | sticky directory | pending on load

Triesto load all of the modulesin the list Modul es atomically. That means that either all modules are |oaded at the
same time, or none of the modules are loaded if there is a problem with any of the modules.

Loading can fail for one the following reasons:
badfile
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code exists.
on_l oad_not _al | oned
A module contains an -on_load function.
dupl i cat ed
A moduleisincluded more than oncein Modul es.
not _purged
The object code cannot be loaded because an old version of the code already exists.
sticky directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module contains an - on_| oad function that never finished.

If it isimportant to minimize the time that an application is inactive while changing code, use prepare _loading/1 and
finish_loading/1 instead of at omi ¢_I| oad/ 1. Hereis an example:

ok,Prepared} = code:prepare loading(Modules),

Put the application into an inactive state or do any
other preparation needed before changing the code.
R

o o A

(o]
® X o° o°

code:finish loading(Prepared),
esume the application.

[
%

prepare_loading(Modules) ->
{ok, Prepared} | {error, [{Module, What}]}

Types.

54 | Ericsson AB. All Rights Reserved.: Kernel

code

Modules = [Module | {Module, Filename, Binary}]

Module = module()

Filename = file:filenane()

Binary = binary()

Prepared = prepared_code()

What = badfile | nofile | on load not allowed | duplicated

Prepares to load the modulesin the list Modul es. Finish the loading by calling finish_loading(Prepared).
This function can fail with one of the following error reasons:
badfile
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code exists.
on_l oad_not _al | owed
A module contains an -on_load function.
dupl i cat ed
A moduleisincluded more than oncein Modul es.

finish loading(Prepared) -> ok | {error, [{Module, What}]}
Types.

Prepared = prepared_code()

Module = module()

What = not purged | sticky directory | pending on load

Tries to load code for all modules that have been previously prepared by prepare loading/1. The loading occurs
atomically, meaning that either all modules are loaded at the same time, or none of the modules are loaded.

This function can fail with one of the following error reasons:
not _purged
The object code cannot be loaded because an old version of the code already exists.
sticky_directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module contains an - on_| oad function that never finished.

ensure modules loaded(Modules :: [Module]) ->
ok | {error, [{Module, What}]}

Types:
Module = module()
What = badfile | nofile | on load failure

Triesto load any modules not already loaded in the list Modul es in the sameway asload file/1.

Returnsok if successful, or{ err or, [{ Modul e, Reason}] } if loading of somemodulesfails. See Error Reasons
for Code-Loading Functions for a description of other possible error reasons.

Ericsson AB. All Rights Reserved.: Kernel | 55

code

delete(Module) -> boolean()
Types.
Module = module()

Removes the current code for Modul e, that is, the current code for Modul e is made old. This means that processes
can continue to execute the code in the module, but no external function calls can be madetoit.

Returnst r ue if successful, or f al se if thereis old code for Mbdul e that must be purged first, or if Modul e is
not a (loaded) module.

purge (Module) -> boolean()
Types.
Module = module()

Purgesthe code for Modul e, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

As of ERTS version 9.0, aprocess is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of er | ang: check_pr ocess_code/ 3, whichisused in order
to determine this.

Returnst r ue if successful and any processis needed to be killed, otherwisef al se.

soft purge(Module) -> boolean()
Types:
Module = module()
Purges the code for Modul e, that is, removes code marked as old, but only if no processes linger init.

As of ERTS version 9.0, a processis only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of er | ang: check_pr ocess_code/ 3, whichisused in order
to determine this.

Returnsf al se if the module cannot be purged because of processes lingering in old code, otherwiset r ue.

is loaded(Module) -> {file, Loaded} | false

Types:
Module = module()
Loaded = | oaded_fil enane()
loaded filename() =

(Filename :: file:filename()) | | oaded_ret_atons()
Fi | ename isan absolute filename.
loaded ret atoms() = cover_compiled | preloaded

Checksif Modul e isloaded. If itis, {fil e, Loaded} isreturned, otherwisef al se.

56 | Ericsson AB. All Rights Reserved.: Kernel

code

Normally, Loaded is the absolute filename Fi | enanme from which the code is obtained. If the module is
preloaded (see script(4)), Loaded==prel oaded. If the module is Cover-compiled (see cover (3)),
Loaded==cover _conpi | ed.

all loaded() -> [{Module, Loaded}]

Types:
Module = module()
Loaded = | oaded_fil ename()
loaded filename() =
(Filename :: file:filenane()) | | oaded_ret _atons()

Fi | enane is an absolute filename.
loaded ret atoms() = cover_compiled | preloaded

Returns alist of tuples{ Modul e, Loaded} for al loaded modules. Loaded is normally the absolute filename,
asdescribed fori s_| oaded/ 1.

which(Module) -> Which

Types:
Module = module()
Which = file:filenane() | |oaded_ret_atons() | non existing

loaded ret _atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file containing object code for Modul e
and returns the absol ute filename.

If the moduleisloaded, it returns the name of the file containing the loaded object code.
If the moduleis preloaded, pr el oaded isreturned.

If the moduleis Cover-compiled, cover _conpi | ed isreturned.

If the module cannot be found, non_exi st i ng isreturned.

get object code(Module) -> {Module, Binary, Filename} | error
Types:

Module = module()

Binary = binary()

Filename = file:fil enane()

Searches the code path for the object code of module Modul e. Returns { Modul e, Bi nary, Fil enane} if
successful, otherwise er r or . Bi nary isabinary data object, which contains the object code for the module. This
can be useful if codeisto be loaded on aremote node in a distributed system. For example, loading module Modul e
on anode Node is done asfollows:

{ Module, Binary, Filename} = code:get object code(Module),
rpc:call(Node, code, load binary, [Module, Filename, Binaryl]),

root dir() -> file:filename()
Returns the root directory of Erlang/OTP, which is the directory whereit isinstalled.
Example:

Ericsson AB. All Rights Reserved.: Kernel | 57

code

> code:root dir().
"/usr/local/otp"

lib dir() -> file:filename()
Returns the library directory, $OTPROOT/ | i b, where $OTPROOT istheroot directory of Erlang/OTP.
Example:

> code:lib dir().
"/usr/local/otp/lib"

lib dir(Name) -> file:filename() | {error, bad name}
Types:
Name = atom()

Returnsthe path for the "library directory", thetop directory, for an application Nare located under $OTPROOT/ | i b
or on adirectory referred to with environment variable ERL_ LI BS.

If aregular directory called Name or Nane- Vsn exists in the code path with an ebi n subdirectory, the path to this
directory isreturned (not the ebi n directory).

If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned.
For example, if directory /usr/ 1 ocal /ot p/lib/ mesia-4.2.2. ez/ mesia-4.2.2/ebin isin the
path, / usr /1 ocal / ot p/ | i b/ mesi a- 4. 2. 2/ ebi n isreturned. This means that the library directory for an
application isthe same, regardless if the application residesin an archive or not.

Example:
> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns{error, bad_nane} if Nanme isnot the name of an application under $OTPROOT/ | i b or on adirectory
referred to through environment variable ERL_ LI BS. Fails with an exception if Nane has the wrong type.

For backward compatibility, Namre is also allowed to be a string. That will probably changein afuture release. ‘

lib dir(Name, SubDir) -> file:filenane() | {error, bad name}
Types:
Name = SubDir = atom()

Returnsthe path to a subdirectory directly under the top directory of an application. Normally the subdirectoriesreside
under the top directory for the application, but when applications at |east partly resides in an archive, the situation is
different. Some of the subdirectories can reside as regular directories while other reside in an archive file. It is not
checked whether this directory exists.

Example:

> code:lib dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

58 | Ericsson AB. All Rights Reserved.: Kernel

code

Fails with an exception if Nane or SubDi r hasthe wrong type.

compiler dir() -> file:filename()
Returns the compiler library directory. Equivalenttocode: | i b_dir(conpiler).

priv_dir(Name) -> file:filenane() | {error, bad name}
Types:
Name = atom()
Returns the path to the pr i v directory in an application. Equivalenttocode: | i b_di r (Nane, priv).

For backward compatibility, Narme is also allowed to be a string. That will probably changein afuture release. |

objfile extension() -> nonempty string()
Returns the object code file extension corresponding to the Erlang machine used, namely . beam

stick dir(Dir) -> ok | error
Types:

Dir = file:filename()
MarksDi r as sticky.
Returns ok if successful, otherwiseer r or .

unstick dir(Dir) -> ok | error
Types:

Dir = file:fil ename()
Unsticks adirectory that is marked as sticky.
Returns ok if successful, otherwiseer r or .

is sticky(Module) -> boolean()
Types.
Module = module()

Returnst r ue if Modul e isthe name of a module that has been loaded from a sticky directory (in other words: an
attempt to reload the module will fail), or f al se if Modul e isnot aloaded module or is not sticky.

where is file(Filename) -> non_existing | Absname
Types:
Filename = Absname = file:fil enane()

Searches the code path for Fi | enane, afile of arbitrary type. If found, the full nameis returned. non_exi sti ng
isreturned if the file cannot be found. The function can be useful, for example, to locate application resource files.

clash() -> ok
Searches al directoriesin the code path for module names with identical names and writes areport to st dout .

Ericsson AB. All Rights Reserved.: Kernel | 59

code

module status(Module :: module()) ->
not loaded | loaded | modified | removed

Returns:
not | oaded
If Modul e isnot currently loaded.
| oaded
If Modul e isloaded and the object file exists and contains the same code.
renmoved
If Mbdul e isloaded but no corresponding object file can be found in the code path.
nodi fi ed
If Mbdul e isloaded but the object file contains code with a different MD5 checksum.

Preloaded modules are always reported as| oaded, without inspecting the contents on disk. Cover compiled modules
will always be reported asnodi f i ed if an object file exists, or asr enpved otherwise. Modules whose load path is
an empty string (which isthe convention for auto-generated code) will only bereported as| oaded or not _| oaded.

For modules that have native code loaded (seei s_nodul e_nat i ve/ 1), the MD5 sum of the native code in the
object fileis used for the comparison, if it exists, the Beam code in the fileisignored. Reversely, for modules that do
not currently have native code loaded, any native code in the file will be ignored.

Seedsonodi fi ed _nodul es/ 0.

modified modules() -> [module()]

Returns the list of al currently loaded modules for which nodul e_st at us/ 1 returns nodi fi ed. See also
al | _| oaded/ 0.

is _module native(Module) -> true | false | undefined
Types:

Module = module()
Returns:
true

If Modul e isthe name of aloaded module that has native code loaded
fal se

If Mbdul e isloaded but does not have native code
undefi ned

If Modul e isnot loaded

get mode() -> embedded | interactive
Returns an atom describing the mode of the code server: i nt er acti ve or enbedded.

Thisinformation is useful when an external entity (for example, an IDE) provides additional code for a running node.
If the code server is in interactive mode, it only has to add the path to the code. If the code server is in embedded
mode, the code must be loaded with | oad_bi nary/ 3.

60 | Ericsson AB. All Rights Reserved.: Kernel

config

config

Name

A configuration file contains values for configuration parameters for the applications in the system. The er |
command-lineargument - conf i g Narre tellsthe systemto usedatain the system configurationfileNane. confi g.

Configuration parameter values in the configuration file override the values in the application resource files (see
app(4)). Thevauesin the configuration file can be overridden by command-lineflags (seeerts: erl (1)).

The value of a configuration parameter isretrieved by callingappl i cati on: get _env/ 1, 2.

File Syntax

The configuration fileisto be called Nane. conf i g, where Nane isany name.

File. conf i g contains asingle Erlang term and has the following syntax:
[{Applicationl, [{Parll, Valll}, ...1},

{ApplicationN, [{ParN1l, ValN1}, ...]1}].

Application = aton()
Application name.

Par = atom()
Name of a configuration parameter.
Val = term()

Value of a configuration parameter.

sys.config

When starting Erlang in embedded mode, it is assumed that exactly one system configuration file is used, named
sys. confi g. This file is to be located in $ROOT/ r el eases/ Vsn, where $ROOT is the Erlang/OTP root
installation directory and Vsn isthe release version.

Release handling relies on this assumption. When installing anew release version, thenew sys. conf i g isread and
used to update the application configurations.

Thismeansthat specifying another . conf i g file, or more. conf i g files, leadsto inconsistent update of application
configurations. Thereis, however, asyntax for sys. conf i g that allows pointing out other . conf i g files:

[{Application, [{Par, Val}l} | File].

File = string()
Name of another . confi g file. Extension. conf i g can be omitted. It is recommended to use absolute paths.
If arelative path isused, Fi | e issearched, first, relative from sys. conf i g directory, then relative to the
current working directory of the emulator, for backward compatibility. Thisallow to useasys. confi g
pointing out other . confi g filesin arelease or in anode started manually using - confi g ... with same
result whatever the current working directory.

When traversing the contents of sys. conf i g and afilename is encountered, its contents are read and merged with
the result so far. When an application configuration tuple { Appl i cat i on, Env} isfound, it is merged with the
result so far. Merging means that new parameters are added and existing parameter values overwritten.

Example:

Ericsson AB. All Rights Reserved.: Kernel | 61

config

sys.config:

[{myapp, [{parl,vall}, {par2,val2}]},
"/home/user/myconfig"].

myconfig.config:

[{myapp, [{par2,val3},{par3,vald}]}].
Thisyields the following environment for my app:

[{parl,vall}, {par2,val3},{par3,vald}]

The behavior if afile specified in sys. conf i g does not exist, or is erroneous, is backwards compatible. Starting

the runtime system will fail. Installing a new release version will not fail, but an error message is returned and the
erroneous file isignored.

See Also
app(4),erts:erl (1), OTP Design Principles

62 | Ericsson AB. All Rights Reserved.: Kernel

disk log

disk log

Erlang module

di sk_| og isadisk-based term logger that enables efficient logging of items on files.
Two types of logs are supported:
halt logs

Appends itemsto asinglefile, which size can be limited by thedi sk_| og module.
wrap logs

Uses a segquence of wrap log files of limited size. Asawrap log fileis filled up, further items are logged on to
the next file in the sequence, starting all over with the first file when the last file isfilled up.

For efficiency reasons, items are always written to files as binaries.
Two formats of the log files are supported:
internal format

Supports automatic repair of log files that are not properly closed and enables efficient reading of logged items
in chunk